Apple II Reference Manual S A

A REFERENCE MANUAL
FOR THE APPLE II
AND THE APPLE II PLUS
PERSONAL COMPUTERS






TABLE OF CONTENTS

CHAPTER 1
APPROACHING YOUR APPLE

2  THE POWER SUPPLY
3 THE MAIN BOARD
| 4 TALKING TO YOUR APPLE
5 THE KEYBOARD
6 READING THE KEYBOARD
9  THE APPLE VIDEO DISPLAY
9  THE VIDEO CONNECTOR
] 10 EURAPPLE (50 HZ) MODIFICATION -
10 SCREEN FORMAT
| 12 SCREEN MEMORY
12 SCREEN PAGES
) 12 SCREEN SWITCHES
| 14 THE TEXT MODE
17 THE LOW-RESOLUTION GRAPHICS (LO-RES) MODE
| 19 THE HIGH-RESOLUTION GRAPHICS (HI-RES) MODE
20 OTHER INPUT/OUTPUT FEATURES
20 THE SPEAKER
22 THE CASSETTE INTERFACE
23 THE GAME I/0 CONNECTOR
| 23 ANNUNCIATOR OUTPUTS
: 24 ONE-BIT INPUTS
24  ANALOG INPUTS
25 STROBE OUTPUT
25 VARIETIES OF APPLES
25 AUTOSTART ROM / MONITOR ROM
26 «REVISION 0 / REVISION 1 BOARD
27 POWER SUPPLY CHANGES
27 THE APPLE II PLUS



CHAPTER 2
CONVERSATION WITH APPLES

30 STANDARD OUTPUT

30 THE STOP-LIST FEATURE

31 BUT SOFT, WHAT LIGHT THROUGH YONDER WINDOW BREAKS!
(OR, THE TEXT WINDOW)

32 SEEING IT ALL IN BLACK AND WHITE

32 STANDARD INPUT

32 RDKEY

33  GETLN

34 ESCAPE CODES

36 THE RESET CYCLE

36 AUTOSTART ROM RESET

37 AUTOSTART ROM SPECIAL LOCATIONS

38 ““OLD MONITOR” ROM RESET

CHAPTER 3 |
THE SYSTEM MONITOR ;

40 ENTERING THE MONITOR

40 ADDRESSES AND DATA

41 EXAMINING THE CONTENTS OF MEMORY

41 EXAMINING SOME MORE MEMORY

43  EXAMINING STILL MORE MEMORY

43 CHANGING THE CONTENTS OF A LOCATION

44 CHANGING THE CONTENTS OF CONSECUTIVE LOCATIONS
44 MOVING A RANGE OF MEMORY

46 COMPARING TWO RANGES OF MEMORY

46 SAVING A RANGE OF MEMORY ON TAPE

47 READING A RANGE FROM TAPE

48 CREATING AND RUNNING MACHINE LANGUAGE PROGRAMS
49 THE MINI-ASSEMBLER



DEBUGGING PROGRAMS

EXAMINING AND CHANGING REGISTERS
MISCELLANEOUS MONITOR COMMANDS
SPECI AL TRICKS WITH THE MONITOR
CREATING YOUR OWN COMMANDS
SUMMARY OF MONITOR COMMANDS
SOME USEFUL MONITOR SUBROUTINES
MONITOR SPECIAL LOCATIONS

MINI- ASSEMBLER INSTRUCTION FORMATS

CHAPTER 4
MEMORY ORGANIZATION

RAM STORAGE

RAM CONFIGURATION BLOCKS
ROM STORAGE

I/0 LOCATIONS

ZERO PAGE MEMORY MAPS



CHAPTER J
INPUT/OUTPUT STRUCTURE

78

80
80
81
82
83
84

BUILT-IN 1/0

PERIPHERAL BOARD I/0

PERIPHERAL CARD 1/0 SPACE
PERIPHERAL CARD ROM SPACE

1/0 PROGRAMMING SUGGESTIONS
PERIPHERAL SLOT SCRATCHPAD RAM
THE CSW/KSW SWITCHES

EXPANSION ROM

CHAPTER 6
HARDWARE CONFIGURATION

THE MICROPROCESSOR
SYSTEM TIMING

POWER SUPPLY

ROM MEMORY

RAM MEMORY

THE VIDEO GENERATOR
VIDEO OUTPUT JACKS
BUILT-IN 1/0

“USER 17 JUMPER

THE GAME 1/0 CONNECTOR
THE KEYBOARD
KEYBOARD CONNECTOR
CASSETTE INTERFACE JACKS
POWER CONNECTOR
SPEAKER

PERIPHERAL CONNECTORS



117

129

135

177

185

APPENDIX A
THE 6502 INSTRUCTION SET

APPENDIX B
SPECIAL LOCATIONS

APPENDIX C
ROM LISTINGS

GLOSSARY

BIBLIOGRAPHY



INDEX

190
194
195
195
195

GENERAL INDEX
INDEX OF FIGURES
INDEX OF PHOTOS
INDEX OF TABLES
CAST OF CHARACTERS



INTRODUCTION

This is the User Reference Manual for the Apple II and Apple II Plus personal computers. Like
the Apple itself, this book is a tool. As with all tools, you should know a little about it before
you start to use it.

This book will not teach you how to program. It is a book of facts, not methods. If you have
just unpacked your Apple, or you do not know how to program in any of the languages available
for it, then before you continue with this book, read one of the other manuals accompanying
your Apple. Depending upon which variety of Apple you have purchased, you should have
received one of the following:

Apple II BASIC Programming Manual
(part number A2L0005)

The Applesoft Tutorial
(part number A2L0018)

These are tutorial manuals for versions of the BASIC language available on the Apple. They also
include complete instructions on setting up your Apple. The Bibliography at the end of this
manual lists other books which may interest you.

There are a few different varieties of Apples, and this manual applies to all of them. It is possible
that some of the features noted in this manual will not be available on your particular Apple. In
places where this manual mentions features which are not universal to all Apples, it will use a
footnote to warn you of these differences.

This manual describes the Apple II computer and its parts and procedures. There are sections on
the System Monitor, the input/output devices and their operation, the internal organization of
memory and input/output devices, and the actual electronic design of the Apple itself. For infor-
mation on any other Apple hardware or software product, please refer to the manual accompany-
ing that product.



K0 ==, LT

R e

=

. P -y B b T v o
SNl AR R I —




CHAPTER 1
APPROACHING YOUR APPLE




For detailed information on setting up your Apple, refer to Chapter 1 of either the Apple BASIC
Programming Manual or The Applesoft Tutorial.

In this manual, all directional instructions will refer to this orientation: with the Apple’s
typewriter-like keyboard facing you, ‘‘front’” and “‘down’’ are towards the keyboard, ‘‘back’’ and
“‘up’ are away. Remove the lid of the Apple by prying up the back edge until it ‘“pops”’, then
pull straight back on the lid and lift it off.

This is what you will see:

Power Supply

CAvAEEEEr S

Main Board

Speaker

S R L
e hEvaR

Photo 1. The Apple II.

THE POWER SUPPLY

The metal box on the left side of the interior is the Power Supply. It supplies four voltages:
+5v, —5.2v, +11.8v, and —12.0v. It is a high-frequency ‘“‘switching’’-type power supply, with
many protective features to ensure that there can be no imbalances between the different sup-
plies. The main power cord for the computer plugs directly into the back of the power supply.
The power-on switch is also on the power supply itself, to protect you and your fingers from
accidentally becoming part of the high-voltage power supply circuit.



g e i e =

"m}p&xz compu
v BB o

110 volt model k 110/220 volt model

MOEEL A2MO01
107132 VAC
SO Hz, | AMP aN

Photo 2. The back of the Apple Power Supply.
THE MAIN BOARD

The large green printed circuit board which takes up most of the bottom of the case is the com-
puter itself. There are two slightly different models of the Apple II main board: the original
(Revision @) and the Revision 1 board. The slight differences between the two lie in the elec-
tronics on the board. These differences are discussed throughout this book. A summary of the
differences appears in the section ‘“Varieties of Apples’ on page 25.

On this board there are about eighty integrated circuits and a handful of other components. In
the center of the board, just in front of the eight gold-toothed edge connectors (‘‘slots’’) at the
rear of the board, is an integrated circuit larger than all others. This is the brain of your Apple.
It is a Synertek/MOS Technology 6502 microprocessor. In the Apple, it runs at a rate of
1,023,000 muachine cycles per second and can do over five hundred thousand addition or subtrac-
tion operations in one second. It has an addressing range of 65,536 eight-bit bytes. Its repertory
includes 56 instructions with 13 addressing modes. This microprocessor and other versions of it
are used in 1many computers systems, as well as other types of electronic equipment.

Just below the microprocessor are six sockets which may be filled with from one to six slightly
smaller integrated circuits. These ICs are the Read-Only Memory (ROM) “‘chips” for the Apple.
They contain programs for the Apple which are available the moment you turn on the power.
Many programs are available in ROM, including the Apple System Monitor, the Apple Autostart
Monitor, Apple Integer BASIC and Applesoft I BASIC, and the Apple Programmer’s Aid #1 util-
ity subroutine package. The number and contents of your Apple’s ROMs depend upon which
type of Apple you have, and the accessories you have purchased.

Right below the ROMs and the central mounting nut is an area marked by a white square on the
board which encloses twenty-four sockets for integrated circuits. Some or all of these may be
filled with ICs. These are the main Random Access Memory (RAM) ‘‘chips” for your Apple.
An Apple can hold 4,096 to 49,152 bytes of RAM memory in these three rows of components.*
Each row camn hold eight ICs of either the 4K or 16K variety. A row must hold eight of the same

* You can extend your RAM memory to 64K by purchasing the Apple Language Card, part of the Apple
Language Syste m (part number A2B0006).



type of memory components, but the two types can both be used in various combinations on
different rows to give nine different memory sizes.* The RAM memory is used to hold all of the
programs and data which you are using at any particular time. The information stored in RAM
disappears when the power is turned off.

The other components on the Apple II board have various functions: they control the flow of
information from one part of the computer to another, gather data from the outside world, or
send information to you by displaying it on a television screen or making a noise on a speaker.

The eight long peripheral slots on the back edge of the Apple’s board can each hold a peripheral
card to allow you to extend your RAM or ROM memory, or to connect your Apple to a printer or
other input/output device. These slots are sometimes called the Apple’s ‘‘backplane’ or
““mother board”’.

TALKING TO YOUR APPLE

Your link to your Apple is at your fingertips. Most programs and languages that are used with
the Apple expect you to talk to them through the Apple’s keyboard. It looks like a normal type-
writer keyboard, except for some minor rearrangement and a few special keys. For a quick
review on the keyboard, see pages 6 through 12 in the Apple II BASIC Programming Manual
or pages 5 through 11 in The Applesoft Tutorial.

Since you’re talking with your fingers, you might as well be hearing with your eyes. The Apple
will tell you what it is doing by displaying letters, numbers, symbols, and sometimes colored
blocks and lines on a black-and-white or color television set.

* The Apple Il is designed to use both the 16K and the less expensive 4K RAMs. However, due to the greater
availability and reduced cost of the 16K chips, Apple now supplies only the 16K RAMs.



THE KEYBOARD

The Apple Keyboard
Number of Keys: 52
Coding:  Upper Case ASCII
Number of codes: 91
Output:  Seven bits, plus strobe

Power requirements:  +5v at 120mA
—12v at 50mA

Rollover: 2 key

Special keys: CTRL
ESC
RESET
REPT

——

Memory mapped locations: Hex  Decimal
Data  $C000 49152 -16384
Clear $C0O10 49168 -16368

The Apple II has a built-in 52-key typewriter-like keyboard which communicates using the Amer-
ican Standard Code for Information Interchange (ASCI)*. Ninety-one of the 96 upper-case
ASCII characters can be generated directly by the keyboard. Table 2 shows the keys on the key-
board and their associated ASCII codes. ‘‘Photo’’ 3 is a diagram of the keyboard.

The keyboard is electrically connected to the main circuit board by a 16-conductor cable with
plugs at each end that plug into standard integrated circuit sockets. One end of this cable is con-
nected to the keyboard; the other end plugs into the Apple board’s keyboard connector, near the
very front edge of the board, under the keyboard itself. The electrical specifications for this con-
nector are given on page 102.

Most languages on the Apple have commands or statements which allow your program to accept
input from the keyboard quickly and easily (for example, the INPUT and GET statements in
BASIC). However, your programs can also read the keyboard directly.

* All ASCII codes used by the Apple normally have their high bit set. This is the same as standard mark-
parity ASCII.



“Photo’’ 3. The Apple Keyboard.

READING THE KEYBOARD

The keyboard sends seven bits of information which together form one character. These seven
bits, along with another signal which indicates when a key has been pressed, are available to most
programs as the contents of a memory location. Programs can read the current state of the key-
board by reading the contents of this location. When you press a key on the keyboard, the value
in this location becomes 128 or greater, and the particular value it assumes is the numeric code
for the character which was typed. Table 3 on page 8 shows the ASCII characters and their asso-
ciated numeric codes. The location will hold this one value until you press another key, or until
your program tells the memory location to forget the character it’s holding.

Once your program has accepted and understood a keypress, it should tell the keyboard’s memory
location to “‘release’’ the character it is holding and prepare to receive a new one. Your program
can do this by referencing another memory location. When you reference this other location, the
value contained in the first location will drop below 128. This value will stay low until you press
another key. This action is called ‘‘clearing the keyboard strobe’’. Your program can either read
or write to the special memory location; the data which are written to or read from that location
are irrelevant. It is the mere reference to the location which clears the keyboard strobe. Once you
have cleared the keyboard strobe, you can still recover the code for the key which was last
pressed by adding 128 (hexadecimal $8@) to the value in the keyboard location.

These are the special memory locations used by the keyboard:

Table 1: Keyboard Special Locations
Location:
Hex Decimal

$COPP 49152 -16384 Keyboard Data
$CP10 49168 -16368 Clear Keyboard Strobe

Description

The [RESET] key at the upper right-hand corner does not generate an ASCII code, but instead is
directly connected to the microprocessor. When this key is pressed, all processing stops. When
the key is released, the computer starts a reset cycle. See page 36 for a description of the RESET



function.

The [CTRL] and [SHIFT] keys generate no codes by themselves, but only alter the codes produced
by other keys.

The key, if pressed alone, produces a duplicate of the last code that was generated. If you
press and hold down the key while you are holding down a character key, it will act as if
you were pressing that key repeatedly at a rate of 10 presses each second. This repetition will
cease when you release either the character key or .

The POWER light at the lower left-hand corner is an indicator lamp to show when the power to
the Apple is on.

Table 2: Keys and Their Associated ASCII Codes
Key | Alone CTRL SHIFT Both Key | Alone CTRL SHIFT Both
space $A0 $A0 $A0 $A0 || RETURN $8D $8D $8D $8D
0 $B0O $B0O $BO $BO G $C7 $87 $C7 $87
1! $B1 $B1 $A1 $A1 H $C8 $88 $C8 $88
2" $B2 $B2 $A2 $A2 I $C9 $89 $C9 $89
3# $B3 $B3 $A3 $A3 J | $CA $8A $CA $8A
4% $B4 $B4 $A4 $A4 K $CB $8B $CB $8B
5% $BS $B5 $AS $AS L | $CC $8C $CcC $8C
6& $B6 $B6 $A6 $A6 M | $CD $8D $DD $9D
7 $B7 $B7 $A7 $A7 N* $CE $8E $DE $9E
8( $B8 $B8 $A8 $A8 (0} $CF $8F $CF $8F
9 $B9 $B9 $A9 $A9 P@ $DO $90 $Co $80
Tk $BA $BA $AA SAA Q $D1 $91 $D1 $91
i+ $BB $BB $AB $AB R $D2 $92 $D2 $92
< SAC $AC $BC $BC S $D3 $93 $D3 $93
—= $AD $AD $BD $BD T $D4 $94 $D4 $94
> $SAE SAE $BE $BE U $D5 $95 $D5 $95
/? $AF $SAF $BF $BF \% $D6 $96 $D6 $96
A $C1 $81 $C1 $81 w $D7 $97 $D7 $97
B $C2 $82 $C2 $82 X $D8 $98 $D8 $98
C $C3 $83 $C3 $83 Y $D9 $99 $D9 $99
D $C4 $84 $C4 $84 Z | $DA $9A $SDA $9A
E $C5 $85 $C5 $85 — $88 $88 $88 $88
F $C6 $86 $C6 $86 — $95 $95 $95 $95
ESC $9B $9B $9B $9B

All codes are given in hexadecimal. To find the decimal equivalents, use Table 3.



Table 3: The ASCII Character Set

Decimal: 128 144 160 176 192 208 224 240

Hex: $80 $90 $A0 $BO $CO S$SD@ SEO $FO
0 $0 nul dle 0 @ P p
1 $1 soh  dcl ! 1 A Q a q
2 $2 stx  dc2 L 2 B R b f
3 $3 etx dc3 # 3 C S [¢ S
4 $4 eot dc4 $ 4 D T d t
5 $5 enq nak % 5 E 8] e u
6 $6 ack syn & 6 F \Y% f v
7 $7 bel etb ’ 7 G w g w
8 $8 bs can ( 8 H X h X
9 $9 ht em ) 9 I Y i y
10 SA If sub * : J V4 j z
11 $B vt esc + : K [ k {
12 $C | £ fs , < L \ 1 |
13 $D cr gs - = M ] m }
14 $E so rs . > N " n -

15 $F si us / 2 (0] _ o rub

Groups of two and three lower case letters are abbreviations for standard ASCII control charac-
ters.

Not all the characters listed in this table can be generated by the keyboard. Specifically, the char-
acters in the two rightmost columns (the lower case letters), the symbols [ (left square bracket), \

(backslash), _ (underscore), and the control characters *‘fs”’, “‘us”, and ‘‘rub’’, are not available
on the Apple keyboard.

The decimal or hexadecimal value for any character in the above table is the sum of the decimal
or hexadecimal numbers appearing at the top of the column and the left side of the row in which
the character appears.



THE APPLE VIDEO DISPLAY

The Apple Video Display
Display type: Memory mapped into system RAM

Display modes:  Text, Low-Resolution Graphics,
High-Resolution Graphics

Text capacity: 960 characters (24 lines, 40 columns)
Character type: 5 x 7 dot matrix
Character set:  Upper case ASCII, 64 characters
Character modes:  Normal, Inverse, Flashing
Graphics capacity: 1,920 blocks (Low-Resolution)
in a 40 by 48 array
53,760 dots (High-Resolution)
in a 280 by 192 array

Number of colors: 16 (Low-Resolution Graphics)
6 (High-Resolution Graphics)

THE VIDEO CONNECTOR

In the right rear corner of the Apple II board, there is a metal connector marked ‘“VIDEO’.
This connector allows you to attach a cable between the Apple and a closed-circuit video monitor.
One end of the connecting cable should have a male RCA phono jack to plug into the Apple, and
the other ennd should have a connector compatible with the particular device you are using. The
signal that comes out of this connector on the Apple is similar to an Electronic Industries Associ-
ation (EIA) -standard, National Television Standards Committee (NTSC)-compatible, positive
composite color video signal. The level of this signal can be adjusted from zero to 1 volt peak by
the small round potentiometer on the right edge of the board about three inches from the back of
the board.

A non-adjustable, 2 volts peak version of the same video signal is available in two other places:
on a single wire-wrap pin* on the left side of the board about two inches from the back of the
board, and on one pin of a group of four similar pins also on the left edge near the back of the
board. The other three pins in this group are connected to —5 volts, +12 volts, and ground.
See page 97 for a full description of this auxiliary video connector.

* This pin is not present in Apple II systems with the Revision @ board.



g s 2VIBEO
vk (23 = s
iy 7 L k. Auxiliary Video

Output Connector

Aucxiliary Video Pin

Level Adjustment
Potentiometer

2
¥
¥
¥
£
¥
s
£

Color Trim
Adjustment

Photo 4. The Video Connectors and Potentiometer.
EURAPPLE (50 HZ) MODIFICATION

Your Apple can be modified to generate a video signal compatible with the CCIR standard used
in many European countries. To make this modification, just cut the two X-shaped pads on the
right edge of the board about nine inches from the back of the board, and solder together the
three O-shaped pads in the same locations (see photo 5). You can then connect the video con-
nector of your Apple to a European standard closed-circuit black-and-white or color video moni-
tor. If you wish, you can obtain a ‘‘Eurocolor’’ encoder to convert the video signal into a PAL or
SECAM standard color television signal suitable for use with any European television receiver.
The encoder is a small printed circuit board which plugs into the rightmost peripheral slot (slot 7)
in your Apple and connects to the single auxiliary video output pin.

WARNING: This modification will void the warranty on your Apple and requires
the installation of a different main crystal. This modification is not for beginners.

SCREEN FORMAT

Three different kinds of information can be shown on the video display to which your Apple is
connected:

10



5

o
Viwww s

r*
(973
Z
(S:8 3
€3
=
=
-'i@a

& = -
jEME N E .
Eommwmmesn
¢

sEmB R RN

L g -
(PR P N

€3
e -
kYo Sg

Sl ymmmmm e

o
i
(73

«
L)
o
©

U &
&‘_,

Jjumper pads

1 ;@sng 74LS
L

741:516
»

§ o o .
izmmeme o -

"41'.-»—---‘-9

=
L=

-
i
i
i
1
i
1
i
61

Ty # on i o -

L

1
L)

LN

*

SR m

Photo 5. Eurapple (50 hz) Jumper Pads.

1) Text. The Apple can display 24 lines of numbers, special symbols, and upper-case letters
with 40 of these characters on each line. These characters are formed in a dot matrix 7 dots
high and 5 dots wide. There is a one-dot wide space on either side of the character and a one-
dot high space above each line.

2) Low-Resolution Graphics. The Apple can present 1,920 colored squares in an array 40
blocks wide and 48 blocks high. The color of each block can be selected from a set of sixteen
different colors. There is no space between blocks, so that any two adjacent blocks of the
same color look like a single, larger block.

3) High-Resolution Graphics. The Apple can also display colored dots on a matrix 280 dots
wide and 192 dots high. The dots are the same size as the dots which make up the Text char-
acters. There are six colors available in the High-Resolution Graphics mode: black, white, red,
blue, green, and violet.* Each dot on the screen can be either black, white, or a color,
although not all colors are available for every dot.

When the Apple is displaying a particular type of information on the screen, it is said to be in
that particular ‘““‘mode’’. Thus, if you see words and numbers on the screen, you can reasonably
be assured that your Apple is in Text mode. Similarly, if you see a screen full of multicolored
blocks, your computer is probably in Low-Resolution Graphics mode. You can also have a four-
line ‘‘caption’ of text at the bottom of either type of graphics screen. These four lines replace

* For Apples with Revision @ boards, there are four colors: black, white, green, and violet.

11



the lower 8 rows of blocks in Low-Resolution Graphics, leaving a 40 by 40 array. In High-
Resolution Graphics, they replace the bottom 32 rows of dots, leaving a 280 by 160 matrix. You
can use these ‘‘mixed modes’’ to display text and graphics simultaneously, but there is no way to
display both graphics modes at the same time.

SCREEN MEMORY

The video display uses information in the system’s RAM memory to generate its display. The
value of a single memory location controls the appearance of a certain, fixed object on the screen.
This object can be a character, two stacked colored blocks, or a line of seven dots. In Text and
Low-Resolution Graphics mode, an area of memory containing 1,024 locations is used as the
source of the screen information. Text and Low-Resolution Graphics share this memory area. In
High-Resolution Graphics mode, a separate, larger area (8,192 locations) is needed because of
the greater amount of information which is being displayed. These areas of memory are usually
called “‘pages”. The area reserved for High-Resolution Graphics is sometimes called the ““picture
buffer’” because it is commonly used to store a picture or drawing.

SCREEN PAGES

There are actually two areas from which each mode can draw its information. The first area is
called the “‘primary page’ or ‘“‘Page 1’°. The second area is called the ‘‘secondary page’’ or
“‘Page 2”° and is an area of the same size immediately following the first area. The secondary
page is useful for storing pictures or text which you want to be able to display instantly. A pro-
gram can use the two pages to perform animation by drawing on one page while displaying the
other and suddenly flipping pages.

Text and Low-Resolution Graphics share the same memory range for the secondary page, just as
they share the same range for the primary page. Both mixed modes which were described above
are also available on the secondary page, but there is no way to mix the two pages on the same
screen.

Table 4: Video Display Memory Ranges
Begins at: Ends at:
Sereen Foes He%( Decimal
Text/Lo-Res  Primary $400 1024 $7FF 2047
Secondary  $800 2048 $BFF 3071
Hi-Res Primary $2000 8192 $3FFF 16383
Secondary  $4000 16384 $SFFF 24575

SCREEN SWITCHES

The devices which decide between the various modes, pages, and mixes are called ‘‘soft
switches’’. They are switches because they have two positions (for example: on or off, text or
graphics) and they are called “‘soft” because they are controlled by the software of the computer.

12



A program can ‘‘throw’’ a switch by referencing the special memory location for that switch. The
data which are read from or written to the location are irrelevant; it is the reference to the address
of the location which throws the switch.

There are eight special memory locations which control the setting of the soft switches for the
screen. They are set up in pairs; when you reference one location of the pair you turn its
corresponding mode ‘“‘on’’ and its companion mode ‘‘off’’. The pairs are:

Table 5: Screen Soft Switches

Losahonsi : Description:

Hex Decimal
$CO50 49232 -16304  Display a GRAPHICS mode.
$CO51 49233 -16303  Display TEXT mode.
$CP52 49234 -16302  Display all TEXT or GRAPHICS.
$C@53 49235 -16301  Mix TEXT and a GRAPHICS mode.*
$C054 49236 -1630@  Display the Primary page (Page 1).
$C0O55 49237 -16299  Display the Secondary page (Page 2).
$CP56 49238 -16298  Display LO-RES GRAPHICS mode.*
$CO57 49239 -16297  Display HI-RES GRAPHICS mode.*

There are ten distinct combinations of these switches:

Table 6: Screen Mode Combinations

Primary Page Secondary Page
Screen Switches Screen Switches
All Text $C054  $CO51 || All Text $C0S5  $CO51

All Lo-Res $CP54  $CO56 || All Lo-Res $CO55 $CO56
Graphics $CP52  $CO50 || Graphics $CP52  $CO50
All Hi-Res $CO54 $CO57 || All Hi-Res $C0B55  $CO57
Graphics $C052 $CO56 || Graphics $CO52  $CO50
Mixed Text $C054 $CO56 || Mixed Text $CO55 $CB56
and Lo-Res  $C053 $CO050 || and Lo-Res  $C@53  $C@50
Mixed Text $C054 $CO57 || Mixed Text $C@55 $C@57
and Hi-Res  $C053 $CO050 || and Hi-Res  $C@#53  $CO50

(Those of you who are learned in the ways of binary will immediately cry out, ‘“Where’s the
other six?!”’, knowing full well that with 4 two-way switches there are indeed sixteen possible
combinations. The answer to the mystery of the six missing modes lies in the
TEXT/GRAPHICS switch. When the computer is in Text mode, it can also be in one of six
combinations of the Lo-Res/Hi-Res graphics mode, ‘“‘mix’’ mode, or page selection. But since
the Apple is displaying text, these different graphics modes are invisible.)

To set the Apple into one of these modes, a program needs only to refer to the addresses of the
memory locations which correspond to the switches that set that mode. Machine language pro-
grams should use the hexadecimal addresses given above, BASIC programs should PEEK or
POKE their decimal equivalents (given in Table 5, “Screen Soft Switches’”, above). The
switches may be thrown in any order; however, when switching into one of the Graphics modes,
it is helpful to throw the TEXT/GRAPHICS switch last. All the other changes in mode will then
take place invisibly behind the text, so that when the Graphics mode is set, the finished graphics

* These modes are only visible if the *‘Display GRAPHICS™ switch is ‘‘on”’.

13



screen appears all at once.

THE TEXT MODE

In the Text mode, the Apple can display 24 lines of characters with up to 40 characters on each
line. Each character on the screen represents the contents of one memory location from the
memory range of the page being displayed. The character set includes the 26 upper-case letters,
the 10 digits, and 28 special characters for a total of 64 characters. The characters are formed in a
dot matrix 5 dots wide and 7 dots high. There is a one-dot wide space on both sides of each
character to separate adjacent characters and a one-dot high space above each line of characters to
separate adjacent lines. The characters are normally formed with white dots on a dark back-
ground; however, each character on the screen can also be displayed using dark dots on a white
background or alternating between the two to produce a flashing character. When the Video
Display is in Text mode, the video circuitry in the Apple turns off the color burst signal to the
television monitor, giving you a clearer black-and-white display.*

The area of memory which is used for the primary text page starts at location number 1024 and
extends to location number 2047. The secondary screen begins at location number 2048 and
extends up to location 3@71. In machine language, the primary page is from hexadecimal address
$400 to address $7FF; the secondary page is from $800 to $BFF. Each of these pages is 1,024
bytes long. Those of you intrepid enough to do the multiplication will realize that there are only
960 characters displayed on the screen. The remaining 64 bytes in each page which are not
displayed on the screen are used as temporary storage locations by programs stored in PROM on
Apple Intelligent Interface® peripheral boards (see page 82).

Photo 6 shows the sixty-four characters available on the Apple’s screen.

Photo 6. The Apple Character Set.

Table 7 gives the decimal and hexadecimal codes for the 64 characters in normal, inverse, and
flashing display modes.

* This feature is not present on the Revision @ board.

14



ASCII Screen Characters

Table 7

EEES-—‘vaw\ol\wo eV Il A e
5
H s
2|3 2 - e RG — o~ x + - ~
0 -
S QMO ED>EX>N— — —
B SRl U AMEOT ~—-¥ASZO0
]
€
2
Eés-—mmvm\o(\mm SVl A e
- =
2 < - = H A RKRF -~ x F+ - ~
T =2
=T SO D >F XN~ — — <
o
c
S|l w =
SR 8OO AU EOT —~=»¥AASZO
Eis.—mmvaI\ooo\ * M Ol A e
w | R 2 - e RG -~ + - ~
=
£
kS
™ -
B RO UE D> B X >N —
T 3O« A L O~~~ 2S5 20
2 3o~ o~ oo -V Il A e
. | o8 — = H e R G -~ x| ~
T2 Sle O D> B X >N— — — <
s 8@V AWML —~>M¥ 25 ZO0
Es—~mvm~owwo<muﬂmu.
L7 7 N < B ¥ T B B 7 B B 7 B 7 B B * R 5 B 7 B < I < ]
= | = &N M T N O ™~ 00 0N’ =~ N M T 0N
g S - SN XS
2
[a]

15

Table 7. ASCII Screen Character Set



$400
$480
$500
$580
$600
$680
$700
$780
$428
$4A8
$528
$5A8
$628
$6A8
$728
$7A8
$450
$4D9
$550
$5D0
$650
$6D0
$750
$7D0

1024
1152
1280
1408
1536
1664
1792
1920
1064
1192
1320
1448
1576
1704
1832
1960
1104
1232
1360
1488
1616
1744
1872
2000

$00

$01

N T VOO
S SSSSSsSsS
PP A AP ABH A

N T O~ 0

ABMDEF9123456789
SRS DS S et e e -
PP PPAANANANNAAAG
S~ NMTOHUOENVAE® =N @ TN
T g e e e e e - NN NN NN

S1A
$1B

26
27
28
29
30
31

$1C

31D
$1E
$1F
$20
$21

32

33
34
35
36
37
38
39

$22
$23

$24
$25

$26
$27

Figure 1. Map of the Text Screen

16



Figure 1 is a map of the Apple’s display in Text mode, with the memory location addresses for
each character position on the screen.

THE LOW-RESOLUTION GRAPHICS (LO-RES)
MODE

In the Low-Resolution Graphics mode, the Apple presents the contents of the same 1,024 loca-
tions of memory as is in the Text mode, but in a different format. In this mode, each byte of
memory is displayed not as an ASCII character, but as two colored blocks, stacked one atop the
other. The screen can show an array of blocks 40 wide and 48 high. Each block can be any of
sixteen colors. On a black-and-white television set, the colors appear as patterns of grey and
white dots.

Since each byte in the page of memory for Low-Resolution Graphics represents two blocks on the
screen, stacked vertically, each byte is divided into two equal sections, called (appropriately
enough) ‘‘nybbles”. Each nybble can hold a value from zero to 15. The value which is in the
lower nybble of the byte determines the color for the upper block of that byte on the screen, and
the value which is in the upper nybble determines the color for the lower block on the screen.
The colors are numbered zero to 15, thus:

Table 8: Low-Resolution Graphics Colors
Decimal Hex Color Decimal Hex Color
0 $0  Black 8 $8 Brown
1 $1 Magenta 9 $9 Orange
2 $2 Dark Blue 10 $A  Grey 2
3 $3 Purple 11 $B Pink
4 $4  Dark Green 12 $C  Light Green
5 $5 Grey 1 13 $D  Yellow
6 $6  Medium Blue 14 $E  Aquamarine
7 $7 Light Blue 15 $F  White

(Colors may vary from television to television, particularly on those without hue controls. You
can adjust the tint of the colors by adjusting the COLOR TRIM control on the right edge of the
Apple board.)

So, a byte containing the hexadecimal value $D8 would appear on the screen as a brown block on
top of a yellow block. Using decimal arithmetic, the color of the lower block is determined by
the quotient of the value of the byte divided by 16; the color of the upper block is determined by
the remainder.

Figure 2 is a map of the Apple’s display in Low-Resolution Graphics mode, with the memory
location addresses for each block on the screen.

Since the Low-Resolution Graphics screen displays the same area in memory as is used for the
Text screen, interesting things happen if you switch between the Text and Low-Resolution
Graphics modes. For example, if the screen is in the Low-Resolution Graphics mode and is full
of colored blocks, and then the TEXT/GRAPHICS screen switch is thrown to the Text mode, the
screen will be filled with seemingly random text characters, sometimes inverse or flashing. Simi-
larly, a screen full of text when viewed in Low-Resolution Graphics mode appears as long hor-
izontal grey, pink, green or yellow bars separated by randomly colored blocks.

17



0daLs

000t

0SLS
0d9s

CL8I

YLl

0S9$

9191

PO L P L PO L P PHLO P PO PH PP L
I T O e i Il e W e R B R i e e I e e W]
SSSSOOOOOOOOOOOOOOOOSSSSS
et e et et e b e e ek e e ek e
P LONE, OOV PE WSROI D
WS aawSsS IR NDOAANNOINWLWS
cox™INN PPN DO DA DO OO

00S$

08¢C1

08+v$
00v$

[491!

17411

(- RN Y N SR Y

Figure 2. Map of the Low-Resolution Graphics Mode

18



THE HIGH-RESOLUTION GRAPHICS (HI-RES)
MODE

The Apple has a second type of graphic display, called High-Resolution Graphics (or sometimes
“Hi-res”’). When your Apple is in the High-Resolution Graphics mode, it can display 53,760
dots in a matrix 280 dots wide and 192 dots high. The screen can display black, white, violet,
green, red, and blue dots, although there are some limitations concerning the color of individual
dots.

The High-Resolution Graphics mode takes its data from an 8,192-byte area of memory, usually
called a ““picture buffer’’. There are two separate picture buffers: one for the primary page and
one for the secondary page. Both of these buffers are independent of and separate from the
memory areas used for Text and Low-Resolution Graphics. The primary page picture buffer for
the High-Resolution Graphics mode begins at memory location number 8192 and extends up to
location number 16383; the secondary page picture buffer follows on the heels of the first at
memory location number 16384, extending up to location number 24575. For those of you with
sixteen fingers, the primary page resides from $2000 to $3FFF and the secondary page follows in
succession at $4000 to $SFFF. If your Apple is equipped with 16K (16,384 bytes) or less of
memory, then the secondary page is inaccessible to you; if its memory size is less than 16K, then
the entire High-Resolution Graphics mode is unavailable to you.

Each dot on the screen represents one bit from the picture buffer. Seven of the eight bits in each
byte are displayed on the screen, with the remaining bit used to select the colors of the dots in
that byte. Forty bytes are displayed on each line of the screen. The least significant bit (first bit)
of the first byte in the line is displayed on the left edge of the screen, followed by the second bit,
then the third, etc. The most significant (eighth) bit is not displayed. Then follows the first bit
of the next byte, and so on. A total of 280 dots are displayed on each of the 192 lines of the
screen.

On a black-and-white monitor or TV set, the dots whose corresponding bits are ‘‘on’’ (or equal to
1) appear white; the dots whose corresponding bits are “‘off”’ or (equal to @) appear black. On a
color monitor or TV, it is not so simple. If a bit is “off”’, its corresponding dot will always be
black. If a bit is ““on’’, however, its color will depend upon the position of that dot on the screen.
If the dot is in the leftmost column on the screen, called ‘‘column @, or in any even-numbered
column, then it will appear violet. If the dot is in the rightmost column (column 279) or any
odd-numbered column, then it will appear green. If two dots are placed side-by-side, they will
both appear white. If the undisplayed bit of a byte is turned on, then the colors blue and red are
substituted for violet and green, respectively.* Thus, there are six colors available in the High-
Resolution Graphics mode, subject to the following limitations:

1) Dots in even columns must be black, violet, or blue.
2) Dots in odd columns must be black, green, or red.

3) Each byte must be either a violet/green byte or a blue/red byte. It is not possible to mix
green and blue, green and red, violet and blue, or violet and red in the same byte.

* On Revision # Apple boards, the colors red and blue are unavailable and the setting of the cighth bit is ir-
relevant.

19



4) Two colored dots side by side always appear white, even if they are in different bytes.

5) On European-modified Apples, these rules apply but the colors generated in the High-
Resolution Graphics mode may differ.

Figure 3 shows the Apple’s display screen in High-Resolution Graphics mode with the memory
addresses of each line on the screen.

OTHER INPUT/OUTPUT FEATURES

Apple Input/Output Features

Inputs:  Cassette Input
Three One-bit Digital Inputs
Four Analog Inputs

Outputs:  Cassette Output
Built-In Speaker
Four ‘‘Annunciator’” Outputs
Utility Strobe Output

THE SPEAKER

Inside the Apple’s case, on the left side under the keyboard, is a small 8 ohm speaker. It is con-
nected to the internal electronics of the Apple so that a program can cause it to make various
sounds.

The speaker is controlled by a soft switch. The switch can put the paper cone of the speaker in
two positions: “‘in’” and ‘“‘out’’. This soft switch is not like the soft switches controlling the vari-
ous video modes, but is instead a foggle switch. Each time a program references the memory
address associated with the speaker switch, the speaker will change state: change from ‘““‘in” to
“‘out” or vice-versa. Each time the state is changed, the speaker produces a tiny ‘‘click’”’. By
referencing the address of the speaker switch frequently and continuously, a program can gen-

erate a steady tone from the speaker.

The soft switch for the speaker is associated with memory location number 49200. Any reference
to this address (or the equivalent addresses -16336 or hexadecimal $C03@) will cause the speaker
to emit a click.

A program can ‘‘reference’’ the address of the special location for the speaker by performing a
“read’” or ‘‘write’’ operation to that address. The data which are read or written are irrelevant, as
it is the address which throws the switch. Note that a ‘“‘write”> operation on the Apple’s 6502
microprocessor actually performs a ‘“‘read’’ before the ‘‘write”’, so that if you use a ‘‘write”’
operation to flip any soft switch, you will actually throw that switch twice. For toggle-type soft
switches, such as the speaker switch, this means that a “‘write’” operation to the special location

20



0001$
00818
00v1S
0001%
00003
00808
00v0%
0000%

U3 sdydein uonnyosay-y3iy ayj jo dejy ‘¢ aInsdig

891L

1448

/1489

9607

wee

8v0C

y01
]

1X0q yoea uJ

6€

[X4
24
YA
243

9€E

SE
ve

€3

us

8916
006
C168
v8L8
9598
8768
00v8
TLes
8C16
0006
TL88
PpL8
9198
8848
09¢8
[4%4]
8806
0968
(431
YL
9LS8
818
aces
618

paces
0SETS
0aces
Y443
paizs
0S1TS
paecs
9143
8VETS
87€TS
8VIls
8CTTs
8VIC$
8CICS
8VaTs
870CS
08€TS
00ETS
087CS
00TTs
081¢$
0o1Cs
@80T
000C$

To obtain the address for any byte, add the addresses for that byte’s box row, box column, and position in box.

21



controlling the switch will leave the switch in the same state it was in before the operation was
performed.

THE CASSETTE INTERFACE

On the back edge of the Apple’s main board, on the right side next to the VIDEO connector, are
two small black packages labelled ““‘IN’’ and ‘“‘OUT”’. These are miniature phone jacks into which
you can plug a cable which has a pair of miniature phono plugs on each end. The-other end of
this cable can be connected to a standard cassette tape recorder so that your Apple can save infor-
mation on audio cassette tape and read it back again.

The connector marked ““OUT” is wired to yet another soft switch on the Apple board. This is
another toggle switch, like the speaker switch (see above). The soft switch for the cassette out-
put plug can be toggled by referencing memory location number 49184 (or the equivalent -16352
or hexadecimal $C@20). Referencing this location will make the voltage on the OUT connector
swing from zero to 25 millivolts (one fortieth of a volt), or return from 25 millivolts back to
zero. If the other end of the cable is plugged into the MICROPHONE input of a cassette tape
recorder which is recording onto a tape, this will produce a tiny ‘‘click” on the recording. By
referencing the memory location associated with the cassette output soft switch repeatedly and
frequently, a program can produce a tone on the recording. By varying the pitch and duration of
this tone, information may be encoded on a tape and saved for later use. Such a program to
encode data on a tape is included in the System Monitor and is described on page 46.

Be forewarned that if you attempt to flip the soft switch for the cassette output by writing to its
special location, you will actually generate two “‘clicks’” on the recording. The reason for this is
mentioned in the description of the speaker (above). You should only use ‘“‘read” operations
when toggling the cassette output soft switch.

The other connector, marked ‘‘IN”’, can be used to ‘‘listen’ to a cassette tape recording. Its
main purpose is to provide a means of listening to tones on the tape, decoding them into data,
and storing them in memory. Thus, a program or data set which was stored on cassette tape may
be read back in and used again.

The input circuit takes a 1 volt (peak-to-peak) signal from the cassette recorder’s EARPHONE
jack and converts it into a string of ones and zeroes. Each time the signal applied to the input
circuit swings from positive to negative, or vice-versa, the input circuit changes state: if it was
sending ones, it will start sending zeroes, and vice versa. A program can inspect the state of the
casseite input circuit by looking at memory location number 49248 or the equivalents -16288 or
hexadecimal $C@60. If the value which is read from this location is greater than or equal to 128,
then the state is a “‘one’’; if the value in the memory location is less than 128, then the state is a
“zero””. Although BASIC programs can read the state of the cassette input circuit, the speed of a
BASIC program is usually much too slow to be able to make any sense out of what it reads.
There is, however, a program in the System Monitor which will read the tones on a cassette tape
and decode them. This is described on page 47.

22



THE GAME I/0 CONNECTOR

The purpose of the Game I/0 connector is to allow you to connect special input and output dev-
ices to heighten the effect of programs in general, and specifically, game programs. This connec-
tor allows you to connect three one-bit inputs, four one-bit outputs, a data strobe, and four ana-
log inputs to the Apple, all of which can be controlled by your programs. Supplied with your
Apple is a pair of Game Controllers which are connected to cables which plug into the Game 1/0
connector. The two rotary dials on the Controllers are connected to two analog inputs on the
Connector; the two pushbuttons are connected to two of the one-bit inputs.

&

=5
|
1

RARAXVARARARJARSAIIAB AT IS
SEE1 450012141 0041 AL 1010 AT AL
SRR E60 41404 1 AL U DR DI

CMUBARTARAARAARARIUAATAR D
I

3
8
B
B
&
B
B
3
3
&
1.3
&
8
8
"
3
5
5
B
&
&
B
&
B
i

Photo 7. The Game I/0 Connector.

ANNUNCIATOR OUTPUTS

The four one-bit outputs are called ‘‘annunciators’’. Each annunciator output can be used as an
input to some other electronic device, or the annunciator outputs can be connected to circuits to
drive lamps, relays, speakers, etc.

Each annunciator is controlled by a soft switch. The addresses of the soft switches for the annun-
ciators are arranged into four pairs, one pair for each annunciator. If you reference the first
address in a pair, you turn the output of its corresponding annunciator ‘‘off”’; if you reference the

second address in the pair, you turn the annunciator’s output “on”’. When an annunciator is

23



“off” the voltage on its pin on the Game 1/0 Connector is near 0 volts; when an annunciator is
, the voltage is near 5 volts. There are no inherent means to determine the current setting
of an annun01alor bit. The annunciator soft switches are:

Table 9: Annunciator Special Locations
Address:
Decimal Hex
0 off 49240 -16296 $C058
on 49241  -16295 $C@59
1 off 49242  -16294 $COSA
on 49243  -16293 $CO5B
2 off 49244  -16292 $CO5C
on 49245 -16291 $CO5SD
3 off 49246 -16290 $COSE
on 49247  -16289 $COSF

Ann. State

ONE-BIT INPUTS

The three one-bit inputs can each be connected to either another electronic device or to a push-
button. You can read the state of any of the one-bit inputs from a machine language or BASIC
program in the same manner as you read the Cassette Input, above. The locations for the three
one-bit inputs have the addresses 49249 through 49251 (-16287 through -16285 or hexadecimal
$CO61 through $C063).

ANALOG INPUTS

The four analog inputs can be connected to 150K Ohm variable resistors or potentiometers. The
variable resistance between each input and the +5 volt supply is used in a one-shot timing cir-
cuit. As the resistance on an input varies, the timing characteristics of its corresponding timing
circuit change accordingly. Machine language programs can sense the changes in the timing loops
and obtain a numerical value corresponding to the position of the potentiometer.

Before a program can start to read the setting of a potentiometer, it must first reset the timing
circuits. Location number 49264 (-16272 or hexadecimal $C070) does just this. When you reset
the timing circuits, the values contained in the four locations 49252 through 49255 (-16284
through -16281 or $CP64 through $CP67) become greater than 128 (their high bits are set).
Within 3.060 milliseconds, the values contained in these four locations should drop below 128.
The exact time it takes for each location to drop in value is directly proportional to the setting of
the game paddle associated with that location. If the potentiometers connected to the analog
inputs have a greater resistance than 150K Ohms, or there are no potentiometers connected, then
the values in the game controller locations may never drop to zero.

24



STROBE OUTPUT

There is an additional output, called C@40 STROBE, which is normally +5 volts but will drop to
zero volts for a duration of one-half microsecond under the control of a machine language or
BASIC program. You can trigger this ‘“‘strobe’’ by referring to location number 49216 (-16320 or
$CP4F). Be aware that if you perform a ‘‘write” operation to this location, you will trigger the
strobe twice (see a description of this phenomenon in the section on the Speaker).

Table 10: Input/Output Special Locations
ress: .
Add ?)SZcima] Hex Bead/Write
Speaker 49200 -16336 $C030 R
Cassette Out | 49184 -16352 $C020 R
Cassette In 49256 -16288 $C0o60 R
Annunciators* | 49240 -16296 $C058 R/W
through  through through
49247 -16289 $CO5F
Flag inputs 49249 -16287 $Co61
49250 -16286 $C062
49251 -16285 $C063
Analog Inputs | 49252 -16284 $C064
49253 -16283 $C065
49254 -16282 $C066
49255 -16281 $C067
Analog Clear | 49264 -16272 $C070 R/W
Utility Strobe | 49216 -16320 $C040 R

Function:

AR R

VARIETIES OF APPLES

There are a few variations on the basic Apple II computer. Some of the variations are revisions
or modifications of the computer itself; others are changes to its operating software. These are
the basic variations:

AUTOSTART ROM / MONITOR ROM

All Apple ITPlus Systems include the Autostart Monitor ROM. All other Apple systems do not contain
the Autostart ROM, but instead have the Apple System Monitor ROM. This version of the ROM
lacks some of the features present in the Autostart ROM, but also has some features which are not
present in that ROM. The main differences in the two ROMs are listed on the following pages.

* See the pre vious table.

25



e Editing Controls. The ESC-I, J, K, and M sequences, which move the cursor up, left, right,
and down, respectively, are not available in the Old Monitor ROM.

® Stop-List. The Stop-List feature (invoked by a [CTRL S|), which allows you to introduce a
pause into the output of most BASIC or machine language programs or listings, is not available
in the Old Monitor ROM.

e The RESET cycle. When you first turn on your Apple or press [RESET], the Old Monitor
ROM will send you directly into the Apple System Monitor, instead of initiating a warm or
cold start as described in ““The RESET Cycle’’ on page 36.

The Old Monitor ROM does, however, support the STEP and TRACE debugging features of the
System Monitor, described on page 51. The Autostart ROM does not recognize these Monitor
commands.

REVISION ¢ / REVISION 1 BOARD

The Revision @ Apple II board lacks a few features found on the current Revision 1 version of
the Apple II main board. To determine which version of the main board is in your Apple, open
the case and look at the upper right-hand corner of the board. Compare what you see to Photo 4
on page 10. If your Apple does not have the single metal video connector pin between the four-
pin video connector and the video adjustment potentiometer, then you have a Revision @ Apple.

The differences between the Revision @ and Revision 1 Apples are summarized below.

e Color Killer. When the Apple’s Video Display is in Text mode, the Revision @ Apple board
leaves the color burst signal active on the video output circuit. This causes text characters to
appear tinted or with colored fringes.

e Power-on RESET. Revision @ Apple boards have no circuit to automatically initiate a RESET
cycle when you turn the power on. Instead, you must press [RESET| once to start using your
Apple.

Also, when you turn on the power to an Apple with a Revision @ board, the keyboard will
become active, as if you had typed a random character. When the Apple starts looking for
input, it will accept this random character as if you had typed it. In order to erase this charac-
ter, you should press after you your Apple when you turn on its power.

@ Colors in High-Resolution Graphics. Apples with Revision @ boards can generate only four
colors in the High-Resolution Graphics mode: black, white, violet, and green. The high bit of
each byte displayed on the Hi-Res screen (see page 19) is ignored.

e 24K Memory Map problem. Systems with a Revision @ Apple II board which contain 20K or
24K bytes of RAM memory appear to BASIC -to have more memory than they actually do.
See ‘“Memory Organization’’, page 72, for a description of this problem.

® 50 Hz Apples. The Revision @ Apple II board does not have the pads and jumpers which you
can cut and solder to convert the VIDEO OUT signal of your Apple to conform to the Euro-
pean PAL/SECAM television standard. It also lacks the third VIDEO connector, the single
metal pin in front of the four-pin video connector.

26



e Speaker and Cassette Interference. On Apples with Revision @ boards, any sound generated
by the internal speaker will also appear as a signal on the Cassette Interface’s OUT connector.
If you leave the tape recorder in RECORD mode, then any sound generated by the internal
speaker will also appear on the tape recording.

e Cassette Input. The input circuit for the Cassette Interface has been modified so that it will
respond with more accuracy to a weaker input signal.

POWER SUPPLY CHANGES

In addition, some Apples have a version of the Apple Power Supply which will accept only a 110
volt power line input. These are are not equipped with the voltage selector switch on the back of
the supply.

THE APPLE II PLUS

The Apple II Plus is a standard Apple II computer with a Revision 1 board, an Autostart Moni-
tor ROM, and the Applesoft II BASIC language in ROM in lieu of Apple Integer BASIC. Euro-
pean models of the Apple II Plus are equipped with a 110/220 volt power supply. The Apple
Mini-Assembler, the Floating-Point Package, and the SWEET-16 interpreter, stored in the
Integer BASIC ROMs, are not available on the Apple II Plus.

27






CHAPTER 2
CONVERSATION WITH APPLES




Almost every program and language on the Apple needs some sort of input from the keyboard,
and some way to print information on the screen. There is a set of subroutines stored in the
Apple’s ROM memory which handle most of the standard input and output from all programs
and languages on the Apple.

The subroutines in the Apple’s ROM which perform these input and output functions are called
by various names. These names were given to the subroutines by their authors when they were
written. The Apple itself does not recognize or remember the names of its own machine
language subroutines, but it’s convenient for us to call these subroutines by their given names.

STANDARD OUTPUT

The standard output subroutine is called COUT. COUT will display upper-case letters, numbers,
and symbols on the screen in either Normal or Inverse mode. It will ignore control characters
except RETURN, the bell character, the line feed character, and the backspace character.

The COUT subroutine maintains its own invisible ‘‘output cursor’* (the position at which the
next character is to be placed). Each time COUT is called, it places one character on the screen
at the current cursor position, replacing whatever character was there, and moves the cursor one
space to the right. If the cursor is bumped off the right edge of the screen, then COUT shifts the
cursor down to the first position on the next line. If the cursor passes the bottom line of the
screen, the screen ‘‘scrolls’ up one line and the cursor is set to the first position on the newly
blank bottom line.

When a RETURN character is sent to COUT, it moves the cursor to the first position of the next
line. If the cursor falls off the bottom of the screen, the screen scrolls as described above.

THE STOP-LIST FEATURE

When any program or language sends a RETURN code to COUT, COUT will take a quick peek at
the keyboard. If you have typed a since the last time COUT looked at the keyboard,
then it will stop and wait for you to press another key. This is called the Stop-List feature.**
When you press another key, COUT will then output the RETURN code and proceed with nor-
mal output. The code of the key which you press to end the Stop-List mode is ignored unless it
is a [CTRL C]. If it is, then COUT passes this character code back to the program or language
which is sending output. This allows you to terminate a BASIC program or listing by typing

CTRL C|while you are in Stop-List mode.

A line feed character causes COUT to move its mythical output cursor down one line without any
horizontal motion at all. As always, moving beyond the bottom of the screen causes the screen
to scroll and the cursor remains at its same position on a fresh bottom line.

A backspace character moves the imaginary cursor one space to the left. If the cursor is bumped
off the left edge, it is reset to the rightmost position on the previous line. If there is no previous
line (if the cursor was at the top of the screen), the screen does not scroll downwards, but instead

* From latin cursus, ‘‘runner”
** The Stop-list feature is not present on Apples without the Autostart ROM.

30



the cursor is placed again at the rightmost position on the top line of the screen.

When COUT is sent a “‘bell” character (CTRL G), it does not change the screen at all, but
instead produces a tone from the speaker. The tone has a frequency of 100Hz and lasts for
1/10th of a second. The output cursor does not move for a bell character.

BUT SOFT, WHAT LIGHT THROUGH YONDER
WINDOW BREAKS!

(OR, THE TEXT WINDOW)

In the above discussions of the various motions of the output cursor, the words “‘right”’, “left”’,
“top””, and ‘‘bottom” mean the physical right, left, top, and bottom of the standard 40-character
wide by 24-line tall screen. There is, however, a way to tell the COUT subroutine that you want
it to use only a section of the screen, and not the entire 960-character display. This segregated
section of the text screen is called a “‘window”. A program or language can set the positions of
the top, bottom, left side, and width of the text window by storing those positions in four loca-
tions in memory. When this is done, the COUT subroutine will use the new positions to calcu-
late the size of the screen. It will never print any text outside of this window, and when it must
scroll the screen, it will only scroll the text within the window. This gives programs the power to
control the placement of text, and to protect areas of the screen from being overwritten with new
text.

Location number 32 (hexadecimal $20) in memory holds the column position of the leftmost
column in the window. This position is normally position @ for the extreme left side of the
screen. This number should never exceed 39 (hexadecimal $27), the leftmost column on the
text screen. Location number 33 (hexadecimal $21) holds the width, in columns, of the cursor
window. This number is normally 40 (hexadecimal $28) for a full 40-character screen. Be care-
ful that the sum of the window width and the leftmost window position does not exceed 40! If it
does, it is possible for COUT to place characters in memory locations not on the screen,
endangering your programs and data.

Location 34 (hexadecimal $22) contains the number of the top line of the text window. This is
also normally @, indicating the topmost line of the display. Location 35 (hexadecimal $23) holds
the number of the bottom line of the screen (plus one), thus normally 24 (hexadecimal $18) for
the bottommost line of the screen. When you change the text window, you should take care that
you know the whereabouts of the output cursor, and that it will be inside the new window.

Table 11: Text Window Special Locations
Function: Locgtion: Min?mum/Normal/Maximum Value
’ Decimal Hex | Decimal Hex
Left Edge 32 $20 | 0/0/39 $0/$0/%17
Width 33 $21 | 0/40/40  $0/$28/%28
Top Edge 34 $22 | 0/0/24 $0/%$0/$18
Bottom Edge | 35 $23 | 0/24/24 $0/$18/$18

31



SEEING IT ALL IN BLACK AND WHITE

The COUT subroutine has the power to print what’s sent to it in either Normal or Inverse text
modes (see page 14). The particular form of its output is determined by the contents of location
number 50 (hexadecimal $32). If this location contains the value 255 (hexadecimal $FF), then
COUT will print characters in Normal mode; if the value is 63 (hexadecial $3F), then COUT will
present its display in Inverse mode. Note that this mode change only affects the characters
printed after the change has been made. Other values, when stored in location 50, do unusual
things: the value 127 prints letters in Flashing mode, but all other characters in Inverse; any
other value in location 50 will cause COUT to ignore some or all of its normal character set.

Table 12: Normal/Inverse Control Values
Value: Effect:
Decimal Hex
255 $FF | COUT will display characters in Normal mode.
63 $3F | COUT will display characters in Inverse mode.
127 $7F | COUT will display letters in Flashing mode, all
other characters in Inverse mode.

The Normal/Inverse ‘“mask” location, as it is called, works by performing a logical ‘““‘AND”’
between the bits contained in location 50 and the bits in each outgoing character code. Every bit
in location 50 which is a logical “‘zero”’ will force the corresponding bit in the character code to
become ‘‘zero” also, regardless of its former setting. Thus, when location 50 contains 63 (hexa-
decimal $3F or binary #@111111), the top two bits of every output character code will be turned
“off””. This will place characters on the screen whose codes are all between 0 and 63. As you
can see from the ASCII Screen Character Code table (Table 7 on page 15), all of these characters
are in Inverse mode.

STANDARD INPUT

There are actually two subroutines which are concerned with the gathering of standard input:
RDKEY, which fetches a single keystroke from the keyboard, and GETLN, which accumulates a
number of keystrokes into a chunk of information called an input line.

RDKEY

The primary function of the RDKEY subroutine is to wait for the user to press a key on the key-
board, and then report back to the program which called it with the code for the key which was
pressed. But while it does this, RDKEY also performs two other helpful tasks:

1). Input Prompting. When RDKEY is activated, the first thing it does is make visible the hid-
den output cursor. This accomplishes two things: it reminds the user that the Apple is waiting
for a key to be pressed, and it also associates the input it wants with a particular place on the
screen. In most cases, the input prompt appears near a word or phrase describing what is being
requested by the particular program or language currently in use. The input cursor itself is a
flashing representation of whatever character was at the position of the output cursor. Usually
this is the blank character, so the input cursor most often appears to be a flashing square.

32



When the user presses a key, RDKEY dutifully removes the input cursor and returns the
value of the key which was pressed to the program which requested it. Remember that the
output cursor is just a position on the screen, but the input cursor is a flashing character on the
screen. They usually move in tandem and are rarely separated from each other, but when the
input cursor disappears, the output cursor is still active.

2). Random Number Seeding. While it waits for the user to press a key, RDKEY is continually
adding 1 to a pair of numbers in memory. When a key is finally pressed, these two locations
together represent a number from @ to 65,535, the exact value of which is quite unpredictable.
Many programs and languages use this number as the base of a random number generator.
The two locations which are randomized during RDKEY are numbers 78 and 79 (hexadecimal
$4E and $4F).

GETLN

The vast majority of input to the Apple is gathered into chunks called input lines. The subroutine
in the Apple’s ROM called GETLN requests an input line from the keyboard, and after getting
one, returmns to the program which called it. GETLN has many features and nuances, and it is
good to be familiar with the services it offers.

When called, GETLN first prints a prompting character, or ‘‘prompt’’. The prompt helps you to
identify which program has called GETLN requesting input. A prompt character of an asterisk
(x) represents the System Monitor, a right caret (>) indicates Apple Integer BASIC, a right
bracket (1) is the prompt for Applesoft Il BASIC, and an exclamation point (!) is the hallmark of
the Apple Mini-Assembler. In addition, the question-mark prompt (?) is used by many programs
and languages to indicate that a user program is requesting input. From your (the user’s) point
of view, the Apple simply prints a prompt and displays an input cursor. As you type, the charac-
ters you type are printed on the screen and the cursor moves accordingly. When you press
, the entire line is sent off to the program or language you are talking to, and you get
another prompt.

Actually, what really happens is that after the prompt is printed, GETLN calls RDKEY, which
displays ani input cursor. When RDKEY returns with a keycode, GETLN stores that keycode in
an input buffer and prints it on the screen where the input cursor was. It then calls RDKEY again.
This continues until the user presses [RETURN]. When GETLN receives-a RETURN code from
the keyboard, it sticks the RETURN code at the end of the input buffer, clears the remainder of
the screen line the input cursor was on, and sends the RETURN code to COUT (see above).
GETLN then returns to the program which called it. The program or language which requested
input may now look at the entire line, all at once, as saved in the input buffer.

At any time while you are typing a line, you can type a and cancel that entire line.
GETLN will simply forget everything you have typed, print a backslash (\), skip to a new line,
and display another prompt, allowing you to retype the line. Also, GETLN can handle a max-
imum of 255 characters in a line. If you exceed this limit, GETLN will cancel the entire line and
you must start over. To warn you that you are approaching the limit, GETLN will sound a tone
every keypress starting with the 249th character.

GETLN also allows you to edit and modify the line you are typing in order to correct simple
typographical errors. A quick introduction to the standard editing functions and the use of the
two arrow  keys, and [=], appears on pages 28-29 and 53-55 of the Apple II BASIC Program-
ming Mamual, or on pages 27-28, 52-53 and Appendix C of The Applesoft Tutorial, at least one

33



of which you should have received. Here is a short description of GETLN’s editing features:
THE BACKSPACE ([=]) KEY

Each press of the backspace key makes GETLN “‘forget”” one previous character in the input line.
It also sends a backspace character to COUT (see above), making the cursor move back to the
character which was deleted. At this point, a character typed on the keyboard will replace the
deleted character both on the screen and in the input line. Multiple backspaces will delete succes-
sive characters; however, if you backspace over more characters than you have typed, GETLN
will forget the entire line and issue another prompt.

THE RETYPE ([=]) KEY

Pressing the retype key has exactly the same effect as typing the character which is under the cur-
sor. This is extremly useful for re-entering the remainder of a line which you have backspaced
over to correct a typographical error. In conjunction with pure cursor moves (which follow), it is
also useful for recopying and editing data which is already on the screen.

ESCAPE CODES

When you press the key marked on the keyboard, the Apple’s input subroutines go into
escape mode. In this mode, eleven keys have separate meanings, called ‘‘escape codes’”. When
you press one of these eleven keys, the Apple will perform the function associated with that key.
After it has performed the function, the Apple will either continue or terminate escape mode,
depending upon which escape code was performed. If you press any key in escape mode which is
not an escape code, then that keypress will be ignored and escape mode will be terminated.

The Apple recognizes eleven escape codes, eight of which are pure cursor moves, which simply
move the cursor without altering the screen or the input line, and three of which are screen clear
codes, which simply blank part or all of the screen. All of the screen clear codes and the first four
pure cursor moves (escape codes @, A, B, C, D, E, and F) terminate the escape mode after
operating. The final four escape codes (I, K, M, and J) complete their functions with escape
mode active.™

A press of the key followed by a press of the [A] key will move the cursor one space
to the right without changing the input line. This is useful for skipping over unwanted
characters in an input line: simply backspace back over the unwanted characters, press
to skip each offending symbol, and use the retype key to re-enter the remainder
of the line.

Pressing followed by [B] moves the cursor back one space, also without disturbing
the input line. This may be used to enter something twice on the same line without
retyping it: just type it once, press repeatedly to get back to the beginning of the
phrase, and use the retype key to enter it again.

* These four escape codes are not available on Apples without the Autostart Monitor ROM,

34



The key sequence moves the cursor one line directly down, with no horizontal

movement. If the cursor reaches the bottom of the text window, then the cursor
remains on the bottom line and the text in the window scrolls up one line. The input
line is not modified by the sequence. This, and [ESC] D] (below), are useful for
positioning the cursor at the beginning of another line on the screen, so that it may be
re-entered with the retype key.

[D] The [D] sequence moves the cursor directly up one line, again without any horizon-

tal movement. If the cursor reaches the top of the window, it stays there. The input
line remains unmodified. This sequence is useful for moving the cursor to a previous
line on the screen so that it may be re-entered with the retype key.

The [E] sequence is called “‘clear to end of line”. When COUT detects this

sequence of keypresses, it clears the remainder of the screen line (nof the input line!)
from the cursor position to the right edge of the text window. The cursor remains
where it is, and the input line is unmodified. always clears the rest of the line to
blank spaces, regardless of the setting of the Normal/Inverse mode location (see above).

This sequence is called “‘clear to end of screen’. It does just that: it clears everything in-

the window below or to the right of the cursor. As before, the cursor does not move
and the input line is not modified. This is useful for erasing random garbage on a clut-
tered screen after a lot of cursor moves and editing.

The sequence is called ‘“home and clear’”. It clears the entire window and

ESC

ESC

ESC

ESC

places the cursor in the upper left-hand corner. The screen is cleared to blank spaces,
regardless of the setting of the Normal/Inverse location, and the input line is not

changed (note that ““[@]” is [SHIFT P]).

[K] These four escape codes are synonyms for the four pure cursor moves given above.
When these four escape codes finish their respective functions, they do not turn off the
[M]escape mode: you can continue typing these escape codes and moving the cursor around
[I] the screen until you press any key other than another escape code. These four keys are

placed in a ‘‘directional keypad”> arrangement, so that the direction of each key from the
center of the keypad corresponds to the direction which that escape code moves the cur-
sor.

=2 = 5

B] §] == => K] [A]

[ F -

Figure 4. Cursor-moving Escape Codes.

35



THE RESET CYCLE

When you turn your Apple’s power switch on* or press and release the key, the Apple’s
6502 microprocessor initiates a RESET cycle. It begins by jumping into a subroutine in the
Apple’s Monitor ROM. In the two different versions of this ROM, the Monitor ROM and the
Autostart ROM, the RESET cycle does very different things.

AUTOSTART ROM RESET

Apples with the Autostart ROM begin their RESET cycles by flipping the soft switches which
control the video screen to display the full primary page of Text mode, with Low-Resolution
Graphics mixed mode lurking behind the veil of text. It then opens the text window to its full
size, drops the output cursor to the bottom of the screen, and sets Normal video mode. Then it
sets the COUT and KEYIN switches to use the Apple’s internal keyboard and video display as the
standard input and output devices. It flips annunciators § and 1 ON and annunciators 2 and 3
OFF on the Game 1/0 connector, clears the keyboard strobe, turns off any active 1/0 Expansion
ROM (see page 84), and sounds a “‘beep!”’.

These actions are performed evety time you press and release the key on your Apple. At
this point, the Autostart ROM peeks into two special locations in memory to see if it’s been
RESET before or if the Apple has just been powered up (these special locations are described
below). If the Apple has just been turned on, then the Autostart ROM performs a “‘cold start’’;
otherwise, it does a ‘‘warm start”’.

1) Cold Start. On a freshly activated Apple, the RESET cycle continues by clearing the screen
and displaying ‘““APPLE II"’ top and center. It then sets up the special locations in memory to
tell itself that it’s been powered up and RESET. Then it starts looking through the rightmost
seven slots in your Apple’s backplane, looking for a Disk II Controller Card. It starts the
search with Slot 7 and continues down to Slot 1. If it finds a disk controller card, then it
proceeds to bootstrap the Apple Disk Operating System (DOS) from the diskette in the disk
drive attached to the controller card it discovered. You can find a description of the disk
bootstrapping procedure in Do’s and Don’ts of DOS, Apple part number A2L.0012, page 11.

If the Autostart ROM cannot find a Disk II controller card, or you press again before
the disk booting procedure has completed, then the RESET cycle will continue with a
“lukewarm start”. It will initialize and jump into the language which is installed in ROM on
your Apple. For a Revision @ Apple, either without an Applesoft II Firmware card or with
such a card with its controlling switch in the DOWN position, the Autostart ROM will start
Apple Integer BASIC. For Apple II-Plus systems, or Revision 0 Apple IIs with the Applesoft
II Firmware card with the switch in the UP position, the Autostart ROM will begin Applesoft
II Floating-Point BASIC.

2) Warm Start. If you have an Autostart ROM which has already performed a cold start cycle,

then each time you press and release the [RESET] key, you will be returned to the language
you were using, with your program and variables intact.

* Power-on RESET cycles occur only on Revision 1 Apples or Revision @ Apples with at least one Disk II con-
troller card.

36



AUTOSTART ROM SPECIAL LOCATIONS

The three ‘“‘special locations’> used by the Autostart ROM all reside in an area of RAM memory
reserved for such system functions. Following is a table of the special locations used by the
Autostart ROM:

Table 13: Autostart ROM Special Locations
Location:
D?ecim(;l Hex Contents:
1010 $3F2 Soft Entry Vector. These two locations contain
1011 $3F3 the address of the reentry point for whatever
language is in use. Normally contains SE@@3.
1012 $3F4 Power-Up Byte. Normally contains $45. See
below.
64367 $FB6F This is the beginning of a machine language
(-1169) subroutine which sets up the power-up location.

When the Apple is powered up, the Autostart ROM places a special value in the power-up loca-
tion. This value is the Exclusive-OR of the value contained in location 1011 with the constant
value 165. For example, if location 1011 contains 224 (its normal value), then the power-up
value will be:

Decimal Hex Binary
Location 1011 224 SE0 11100000
Constant 165 $AS 10100101
Power-Up Value 69 $45 01000101

Your programs can change the soft entry vector, so that when you press you will go to
some program other than a language. If you change this soft entry vector, however, you should
make sure that you set the value of the power-up byte to the Exclusive-OR of the high part of
your new soft entry vector with the constant decimal 165 (hexadecimal $A5). If you do not set
this power-up value, then the next time you press the Autostart ROM will believe that
the Apple has just been turned on and it will do another cold start.

For example, you can change the soft entry vector to point to the Apple System Monitor, so that
when you press you will be placed into the Monitor. To make this change, you must
place the address of the beginning of the Monitor into the two soft entry vector locations. The
Monitor begins at location $FF69, or decimal 65385. Put the last two hexadecimal digits of this
address ($69) into location $3F2 and the first two digits (3FF) into location $3F3. If you are
working in decimal, put 105 (which is the remainder of 65385/256) into location 1010 and the
value 255 (which is the integer quotient of 65385/256) into location 1011.

Now you must set up the power-up location. There is a machine-language subroutine in the
Autostart ROM which wil automatically set the value of this location to the Exclusive-OR men-
tioned above. Al you need to do is to execute a JSR (Jump to SubRoutine) instruction to the
address $FFB6F. If you are working in BASIC, you should perform a CALL -1169. Now every-
thing is set, and the next time you press [RESET], you will enter the System Monitor.

To make the |[RESET| key work in its usual way, just restore the values in the soft entry vector to
their former values ($E003, or decimal 57347) and again call the subroutine described above.

37



“OLD MONITOR”’ ROM RESET

A RESET cycle in the Apple II Monitor ROM begins by setting Normal video mode, a full screen
of Primary Page text with the Color Graphics mixed mode behind it, a fully-opened text window,
and the Apple’s standard keyboard and video screen as the standard input and output devices. It
sounds a ‘“beep!”’, the cursor leaps to the bottom line of the uncleared text screen, and you find
yourself facing an asterisk () prompt and talking to the Apple System Monitor.

38



CHAPTER 3
THE SYSTEM MONITOR




Buried deep within the recesses of the Apple’s ROM is a masterful program called the System
Monitor. It acts as both a supervisor of the system and a slave to it; it controls all programs and
all programs use it. You can use the powerful features of the System Monitor to discover the
hidden secrets in all 65,536 memory locations. From the Monitor, you may look at one, some,
or all locations; you may change the contents of any location; you can write programs in Machine
and Assembly languages to be executed directly by the Apple’s microprocessor; you can save vast
quantities of data and programs onto cassette tape and read them back in again; you can move
and compare thousands of bytes of memory with a single command; and you can leave the Moni-
tor and enter any other program or language on the Apple.

ENTERING THE MONITOR

The Apple System Monitor program begins at location number $FF69 (decimal 65385 or —151)
in memory. To enter the Monitor, you or your BASIC program can CALL this location. The
Monitor’s prompt (an asterisk [+]) will appear on the left edge of the screen, with a flashing cur-
sor to its right. The Monitor accepts standard input lines (see page 32) just like any other system
or language on the Apple. It will not take any action until you press [RETURN]. Your input lines
to the Monitor may be up to 255 characters in length. When you have finished your stay in the
Monitor, you can return to the language you were previously using by typing
(or, with the Apple DOS, [3][D][#] [G][RETURN]), or simply press [RESET).*

ADDRESSES AND DATA

Talking to the Monitor is somewhat like talking to any other program or language on the Apple:
you type a line on the keyboard, followed by a [RETURN], and the Monitor will digest what you
typed and act according to those instructions. You will be giving the Monitor three types of
information: addresses, values, and commands. Addresses and values are given to the Monitor in
hexadecimal notation. Hexadecimal notation uses the ten decimal digits (6-9) to represent them-
selves and the first six letters (A-F) to represent the numbers 10 through 15. A single hexade-
cimal digit can, therefore, have one of sixteen values from 0 to 15. A pair of hex digits can
assume any value from 0 to 255, and a group of four hex digits can denote any number from 0 to
65,536. It so happens that any address in the Apple can be represented by four hex digits, and
any value by two hex digits. This is how you tell the Monitor about addresses and values. When
the Monitor is looking for an address, it will take any group of hex digits. If there are fewer than
four digits in the group, it will prepend leading zeroes; if there are more than four hex digits, the
Monitor will truncate the group and use only the last four hex digits. It follows the same pro-
cedure when looking for two-digit data values.

The Monitor recognizes 22 different command characters. Some of these are punctuation marks,
others are upper-case letters or control characters. In the following sections, the full name of a
command will appear in capital letters. The Monitor needs only the first letter of the command
name. Some commands are invoked with control characters. You should note that although the
Monitor recognizes and interprets these characters, a control character typed on an input line will
not appear on the screen.

* This does not work on Apples without the Autostart ROM.

40



The Monitor remembers the addresses of up to five locations. Two of these are special: they are
the addresses of the last location whose value you inquired about, and the location which is next
to have its value changed. These are called the last opened location and the next changeable loca-
tion. The wusefulness of these two addresses will be revealed shortly.

EXAMINING THE CONTENTS OF MEMORY

When you type the address of a location in memory alone on an input line to the Monitor, it will
reply* with the address you typed, a dash, a space, and the value™ contained in that location,
thus:

*E000
E@io— 20
*300
g366— 99

*

Each time the Monitor displays the value contained in a location, it remembers that location as
the last opened location. For technical reasons, it also considers that location as the next change-
able location.

EXAMINING SOME MORE MEMORY

If you type a period (.) on an input line to the Monitor, followed by an address, the Monitor will
display a #snemory dump: the values contained in all locations from the last opened location to the
location whose address you typed following the period. The Monitor then considers the last loca-
tion displayed to be both the last opened location and the next changeable location.

* In the examples, your queries are in normal type and the Apple replies in boldface.
* The values printed in these examples may differ from the values displayed by your Apple for the same in-
structions.

41



=20

0g20— 00
*. 2B

#021— 28 09 18 OF 0C 60 00
#928— A8 g6 DI ¢7
*300

#3909— 99
=.315

@301— B9 09 08 GA FA HA 99
#308— 09 068 C8 DF F4 A6 2B A9
#316— 99 85 27 AD CC #3

* . 32A

#316— 85 41

#318— 84 40 8A 4A 4A 4A 4A 69
#320— C# 85 3F A9 5D 85 3E 24
#328— 43 03 20

*

You should notice several things about the format of a memory dump. First, the first line in the
dump begins with the address of the location following the last opened location; second, all other
lines begin with addresses which end alternately in zeroes and eights; and third, there are never
more than eight values displayed on a single line in a memory dump. When the Monitor does a
memory dump, it starts by displaying the address and value of the location following the last
opened location. It then proceeds to the next successive location in memory. If the address of
that location ends in an 8 or a @, the Monitor will “‘cut’ to a new line and display the address of
that location and continue displaying values. After it has displayed the value of the location
whose address you specified, it stops the memory dump and sets the address of both the last
opened and the next changeable location to be the address of the last location in the dump. If
the address specified on the input line is less than the address of the last opened location, the
Monitor will display the address and value of only the location following the last opened location.

You can combine the two commands (opening and dumping) into one operation by concatenating
the second to the first; that is, type the first address, followed by a period and the second address.
This two-addresses-separated-by-a-period form is called a memory range.

*300.32F

#306— 99 B9 69 68 A GA A 99
#308— 0@ 68 C8 DF F4 A6 2B A9
#319— 69 85 27 AD CC #3 85 41
#318— 84 409 B8A 4A 4A 4A 4A 09
#320— C# 85 3F A9 5D 85 3E 24
#328— 43 @3 20 46 #3 AS 3D 4D
*30.40

0830— AA 9 FF AA @5 C2 @5 C2
9938— 1B FD D@ 63 3C 60 40 60
po40— 30

*EP15.E025

42



E#15— 4C ED FD
EG18— A9 26 C5 24 B§ #C A9 8D
E@20— AG 67 20 ED FD A9

*

EXAMINING STILL MORE MEMORY

A single press of the key will cause the Monitor to respond with one line of a memory
dump; that is, a memory dump from the location following the last opened location to the next
eight-location “‘cut”. Once again, the last location displayed is considered the last opened and
next changeable location.

*5
6005— 99
+[RETURN]
[TT]
*[RETURN]

g0g8— 00 00 00 60 00 G0 60 09
*32

6932— FF
+[RETURN]
AA §9 C2 #5 C2
+[RETURN]

$938— 1B FD D¢ @3 3C 09 3F 60

*

CHANGING THE CONTENTS OF A LOCATION

You’ve heard all about the ‘‘next changeable location’; now you’re going to use it. Type a
colon followed by a value.

=0

Goeg— 690
*=:5F

Presto! The contents of the next changeable location have just been changed to the value you
typed. Check this by examining that location again:

=0
6ggP— SF

43



*

You can also combine opening and changing into one operation:

*302:42
*302
g392— 42

*

When you change the contents of a location, the old value which was contained in that location
disappears, never to be seen again. The new value will stick around until it is replaced by another
hexadecimal value.

CHANGING THE CONTENTS OF
CONSECUTIVE LOCATIONS

You don’t have to type an address, a colon, a value, and press for each and every loca-
tion you wish to change. The Monitor will allow you to change the values of up to eighty-five
locations at a time by typing only the initial address and colon, and then all the values separated
by spaces. The Monitor will duly file the consecutive values in consecutive locations, starting at
the next changeable location. After it has processed the string of values, it will assume that the
location following the last changed location is the next changeable location. Thus, you can con-
tinue changing consecutive locations without breaking stride on the next input line by typing
another colon and more values.

*300:69 01 20 ED FD 4C 0 3
=300
#300— 69

*[RETURN]
g1 20 ED FD 4C ¢4 03

«*=10:0 1 2 3
*:4 5 6 7
=*10.17

6016— 06 61 62 63 G4 05 06 @7

*

MOVING A RANGE OF MEMORY

You can treat a range of memory (specified by two addresses separated by a period) as an entity

44



unto itself and move it from one place to another in memory by using the Monitor’s MOVE
command. In order to move a range of memory from one place to another, the Monitor must be
told both where the range is situated in memory and where it is to be moved. You give this
information to the Monitor in three parts: the address of the destination of the range, the
address of the first location in the range proper, and the address of the last location in the range.
You specify the starting and ending addresses of the range in the normal fashion, by separating
them with a period. You indicate that this range is to be placed somewhere else by separating the
range and the destination address with a left caret (<). Finally, you tell the Monitor that you
want to move the range to the destination by typing the letter M, for “MOVE”. The final com-
mand looks like this:

{destination} < {start} . {end} M

When you type this line to the Monitor, of course, the words in curly brackets should be replaced
by hexadecimal addresses and the spaces should be omitted. Here are some real examples of
memory moves:

0 .F

go0p@— SF 60 65 67 00 06 00 00
gog8— 60 99 69 00 00 00 00 60
+300:A9 8D 20 ED FD A9 45 20 DA FD 4C 00 03

+300.30C

g3006— A9 8D 2¢ ED FD A9 45 240
#308— DA FD 4C ¢9 63
+0<300.30CM

0 .C

gopg— A9 8D 29 ED FD A9 45 20
#9@8— DA FD 4C 69 03
+310<8.AM

*310.312

#316— DA FD 4C
*2<7.9M

«0.C

geee— A9 8D 26 DA FD A9 45 24
#9@8— DA FD 4C 09 63

*

The Monitor simply makes a copy of the indicated range and moves it to the specified destina-
tion. The original range is left undisturbed. The Monitor remembers the last location in the ori-
ginal range as the last opened location, and the first location in the original range as the next
changeable location. If the second address in the range specification is less than the first, then
only one value (that of the first location in the range) will be moved.

If the destination address of the MOVE command is inside the original range, then strange and
(sometimes) wonderful things happen: the locations between the beginning of the range and the

45



destination are treated as a sub-range and the values in this sub-range are replicated throughout
the original range. See ‘‘Special Tricks’’, page 55, for an interesting application of this feature.

COMPARING TWO RANGES OF MEMORY

You can use the Monitor to compare two ranges of memory using much the same format as you
use to move a range of memory from one place to another. In fact, the VERIFY command can
be used immediately after a MOVE to make sure that the move was successful.

The VERIFY command, like the MOVE command, needs a range and a destination. In short-
hand:

{destination} < {start} . {end} V

The Monitor compares the range specified with the range beginning at the destination address. If
there is any discrepancy, the Monitor displays the address at which the difference was found and
the two offending values.

*0:D7 F2 E9 F4 F4 ES EE A0 E2 F9 A0 C3 C4 CS

*300<0.DM

*300<0.DV

+6:E4

*300<0.DV

#996—E4 (EE)

*

Notice that the VERIFY command, if it finds a discrepancy, displays the address of the location
in the original range whose value differs from its counterpart in the destination range. If there is
no discrepancy, VERIFY displays nothing. It leaves both ranges unchanged. The last opened and
next changeable locations are set just as in the MOVE command. As before, if the ending
address of the range is less than the starting address, the values of only the first locations in the
ranges will be compared. VERIFY also does unusual things if the destination is within the origi-
nal range; see ‘‘Special Tricks’’, page 5.

SAVING A RANGE OF MEMORY ON TAPE

The Monitor has two special commands which allow you to save a range of memory onto cassette
tape and recall it again for later use. The first of these two commands, WRITE, lets you save the
contents of one to 65,536 memory locations on standard cassette tape.

To save a range of memory to tape, give the Monitor the starting and ending addresses of the
range, followed by the letter W (for WRITE):

46



{start} . {end}) W

To get an accurate recording, you should put the tape recorder in record mode before you press
on the input line. Let the tape run a few seconds, then press [RETURN]. The Monitor
will write a ten-second ‘‘leader’’ tone onto the tape, followed by the data. When the Monitor is
finished, it will sound a *>’beep!” and give you another prompt. You should then rewind the tape,
and label the tape with something intelligible about the memory range that’s on the tape and what
it’s supposed to be.

+0.FF FF AD 30 C0 88 DO 04 C6 01 FO 08 C
A D@ F6 A6 00 4C 02 00 60

+0.14

¢g96— FF FF AD 39 C¢ 88 Df 04
#ge8— C6 01 F9 08 CA DI F6 A6
#G19— 09 4C 02 90 640

0. 14W

*

It takes about 35 seconds total to save the values of 4,096 memory locations preceded by the
ten-second leader onto tape. This works out to a speed of about 1,350 bits per second, average.
The WRITE command writes one extra value on the tape after it has written the values in the
memory range. This extra value is the checksum. It is the partial sum of all values in the range.
The READ subroutine uses this value to determine if a READ has been successful (see below).

READING A RANGE FROM TAPE

Once you’ve saved a memory range onto tape with the Monitor’s WRITE command, you can
read that memory range back into the Apple by using the Monitor’s READ command. The data
values which you’ve stored on the tape need not be read back into the same memory range from
whence they came; you can tell the Monitor to put those values into any similarly sized memory
range in the Apple’s memory.

The format of the READ command is the same as that of the WRITE command, except that the
command letter is R, not W:

{start} . {end} R

Once again, after typing the command, don’t press [RETURN]. Instead, start the tape recorder in
PLAY mode and wait for the tape’s nonmagnetic leader to pass by. Although the WRITE com-
mand puts a ten-second leader tone on the beginning of the tape, the READ command needs
only three seconds of this leader in order to lock on to the frequency. So you should let a few
seconds of tape go by before you press [RETURN], to allow the tape recorder’s output to settle
down to a steady tone.

*0:0 00 0000000000000 O0O0O0
00

*0.14

47



g000— 00 60 00 00 00 60 G0 00
g008— 06 060 060 00 00 00 60 00
0019— 60 00 66 90 00

0. 14R

0. 14

¢#999— FF FF AD 3¢ C¢ 88 D§ ¢4
#p98— C6 #1 FOG 68 CA DJ F6 A6
#010— 66 4C 92 90 60

*

After the Monitor has read in and stored all the values on the tape, it reads in the extra check-
sum value. It compares the checksum on the tape to its own checksum, and if the two differ, the
Monitor beeps the speaker and displays ‘“‘ERR”. This warns you that there was a problem during
the READ and that the values stored in memory aren’t the values which were recorded on the
tape. If, however, the two checksums match, the Monitor will give you another prompt.

CREATING AND RUNNING MACHINE
LANGUAGE PROGRAMS

Machine language is certainly the most efficient language on the Apple, albeit the least pleasant in
which to code. The Monitor has special facilities for those of you who are determined to use
machine language to simplify creating, writing, and debugging machine language programs.

You can write a machine language program, take the hexadecimal values for the opcodes and
operands, and store them in memory using the commands covered above. You can get a hexade-
cimal dump of your program, move it around in memory, or save it to tape and recall it again
simply by using the commands you’ve already learned. The most important command, however,
when dealing with machine language programs is the GO command. When you open a location
from the Monitor and type the letter G, the Monitor will cause the 6502 microprocessor to start
executing the machine language program which begins at the last opened location. The Monitor
treats this program as a subroutine: when it’s finished, all it need do is execute an RTS (return
from subroutine) instruction and control will be transferred back to the Monitor.

Your machine language programs can call many subroutines in the Monitor to do various things.
Here is an example of loading and running a machine language program to display the letters A
through Z:

*300:A9 C1 20 ED FD 18 69 1 C9 DB D@ F6 60

«*300.30C

#3606— A9 C1 26 ED FD 18 69 01

#398— C9 DB D# F6 64

*300G

ABCDEFGHI JKIMNOPQRSTUVWXYZ

*

(The instruction set of the Apple’s 6502 microprocessor is listed in Appendix A of this manual.)

48



Now, straight hexadecimal code isn’t the easiest thing in the world to read or debug. With this in
mind, the creators of the Apple’s Monitor neatly included a command to list machine language
programs in assembly language form. This means that instead of having one, two, or three bytes
of unformatted hexadecimal gibberish per instruction you now have a three-letter mnemonic and
some formatted hexadecimal gibberish to comprehend for each instruction. The LIST command
to the Monitor will start at the specified location and display a screenfull (20 lines) of instruc-
tions:

*300L

#366— A9 C1 LDA #3C1
#362— 2¢ ED FD JSR $FDED
#365— 18 CLC

#306— 69 01 ADC #3801
#308— C9 DB (0714 #3$DB
#36A— D@ F6 BNE $6302
#34C— 69 RTS

9 34D— 09 BRK

@ 30E— (1] BRK

#30F— 99 BRK

#310— 99 BRK

g311— (X BRK

g312— (X BRK

#313— (X'} BRK

$314— 09 BRK

#315— 09 BRK

#316— 09 BRK

#317— 9 BRK

$318— ) BRK

#319— 09 BRK

*

Recognize those first few lines? They’re the assembly language form of the program you typed
in a page or so ago. The rest of the lines (the BRK instructions) are just there to fill up the
screen. The address that you specify is remembered by the Monitor, but not in one of the ways
explained before. It’s put in the Program Counter, which is used solely to point to locations
within programs. After a LIST command, the Program Counter is set to point to the location
immediately following the last location displayed on the screen, so that if you do another LIST
command it will continue with another screenfull of instructions, starting where the first screen
left off.

THE MINI-ASSEMBLER

There is another program within the Monitor* which allows you to type programs into the Apple
in the same assembly format which the LIST command displays. This program is called the
Apple Mini-Assembler. It is a ‘‘mini’’-assembler because it cannot understand symbolic labels,
something that a full-blown assembler must do. To run the Mini-Assembler, type:

* The Mini-Assembler does not actually reside in the Monitor ROM, but is part of the Integer BASIC ROM
set. Thus, it is not available on Apple II Plus systems or while Firmware Applesoft Il is in usc.

49



*F666G

!

You are now in the Mini-Assembler. The exclamation point (!) is the prompt character. During
your stay in the Mini-Assembler, you can execute any Monitor command by preceding it with a
dollar sign ($). Aside from that, the Mini-Assembler has an instruction set and syntax all its
own.

The Mini-Assembler remembers one address, that of the Program Counter. Before you start to
enter a program, you must set the Program Counter to point to the location where you want your
program to go. Do this by typing the address followed by a colon. Follow this with the
mnemonic for the first instruction in your program, followed by a space. Now type the operand
of the instruction (Formats for operands are listed on page 66). Now press [RETURN]. The
Mini-Assembler converts the line you typed into hexadecimal, stores it in ‘'memory beginning at
the location of the Program Counter, and then disassembles it again and displays the disassem-
bled line on top of your input line. It then poses another prompt on the next line. Now it’s
ready to accept the second instruction in your program. To tell it that you want the next instruc-
tion to follow the first, don’t type an address or a colon, but only a space, followed by the next
instruction’s mnemonic and operand. Press [RETURN]. It assembles that line and waits for
another.

If the line you type has an error in it, the Mini-Assembler will beep loudly and display a
circumflex (*) under or near the offending character in the input line. Most common errors are
the result of typographical mistakes: misspelled mnemonics, missing parentheses, etc. The
Mini-Assembler also will reject the input line if you forget the space before or after a mnemonic
or include an extraneous character in a hexadecimal value or address. If the destination address
of a branch instruction is out of the range of the branch (more than 127 locations distant from
the address of the instruction), the Mini-Assembler will also flag this as an error.

1300 :LDX #62

#300— A2 @2 LDX #3402
! LDA §0,X

#302— B5 649 LDA $60,X
! STA $10,X

#304— 95 19 STA $14,X
! DEX

p306— CA DEX

! STA $C030

#307— 8D 30 C#¢ STA $Co390
! BPL $302

#30A— 19 Fé6 BPL $0302
! BRK

#30C— 09 BRK
!

To exit the Mini-Assembler and re-enter the Monitor, either press |RESET| or type the Monitor

50



command (preceded by a dollar sign) FF69G:
'$FF69G

*

Your assembly language program is stored in memory. You can look at it again with the LIST
command:

*300L

9306— A2 §2 LDX #8602
#302— B5 660 LDA $60,X
#304— 95 14 STA $19,X
#306— CA DEX

9307 8D 3¢9 C@ STA $Co30
#30A— 10 Fé6 BPL $6302
#30C— ) BRK

#30D— 09 BRK

#30E— 09 BRK

#30F— 09 BRK

#310— 09 BRK

g311— 09 BRK

g312— (X'} BRK

$313— ) BRK

#314— 1 BRK

#315— 09 BRK

#316— 09 BRK

#317— g0 BRK

#318— 0o BRK

#319— 0o BRK

*

DEBUGGING PROGRAMS

2

As put so concisely by Lubarsky*, ‘“There’s always one more bug.”” Don’t worry, the Monitor
provides facilities for stepping through ornery programs to find that one last bug. The Monitor’s
STEP** command decodes, displays, and executes one instruction at a time, and the TRACE**
command steps quickly through a program, stopping when a BRK instruction is executed.

Each STEP command causes the Monitor to execute the instruction in memory pointed to by the
Program Counter. The instruction is displayed in its disassembled form, then executed. The
contents of the 6502’s internal registers are displayed after the instruction is executed. After exe-
cution, the Program Counter is bumped up to point to the next instruction in the program.

Here’s what happens when you STEP through the program you entered using the Mini-
Assembler, above:

* In Murphy’s Law, and Other Reasons why Things Go Wrong, edited by Arthur Bloch. Price/Stern/Sloane 1977.
** The STEP and TRACE commands are not available on Apples with the Autostart ROM.

51



*300S

#300—
A=A
*S

#302—
A=fC
*S

#304—
A=fC
*12

gg12—
*S

g306—
A=C
*S

#307—
A=C
*S

@30A—
A=fC
=S

#392—
A=§B
=S

#304—
A=§B

*

A2
X=p§2

B5
X=#2

95
X=62

gC

CA
X=01

8D
X=01

19
X=01

B5
X=01

95
X=01

92 LDX
Y=D8 P=3§ S=F8

0o LDA
Y=D8 P=3§ S=F8

19 STA
Y=D8 P=3§ S=F8

DEX
Y=D8 P=3¢§ S=F8

39 C¢ STA
Y=D8 P=3§ S=F8

Fé6 BPL
Y=D8 P=39 S=F8

(1) LDA
Y=D8 P=3¢ S=F8

19 STA
Y=D8 P=3¢ S=F8

#3802

$00,X

$14.,X

$Ca39

$6392

$40,X

$10,X

Notice that after the third instruction was executed, we examined the contents of location 12.
They were as we expected, and so we continued stepping. The Monitor keeps the Program
Counter and the last opened address separate from one another, so that you can examine or
change the contents of memory while you are stepping through your program.

The TRACE command is just an infinite STEPper. It will stop TRACEing the execution of a pro-
gram only when you push or it encounters a BRK instruction in the program. If the
TRACE encounters the end of a program which returns to the Monitor via an RTS instruction,
the TRACEing will run off into never-never land and must be stopped with the button.

=T

g3g6—
A=0B
#307—
A=0B
@30A—

CA
X=09
8D
X=00
14

DEX
Y=D8 P=32 S=F8
39 Co STA
Y=D8 P=32 S=F8§
Fo6 BPL

$Co3¢
$0302

52



A=fB X=09 Y=D8 P=32 S=F8

§302— B5 60 LDA $40,X
A=§A X=0# Y=D8 P=30 S=F8

$364— 95 19 STA $10,X
A=§A X=0§# Y=D8 P=30 S=F8

$366— CA DEX
A=fA X=FF Y=D8 P=B# S=F8

§367— 8D 39 C¢ STA $Co340
A=§A X=FF Y=D8 P=B# S=F8

# 30A— 10 Fo BPL $6302
A=fA X=FF Y=D8 P=B# S=F8

§30C— ) BRK

#30C— A=gA X=FF Y=D8 P=B# S=F8

EXAMINING AND CHANGING REGISTERS

As you saw above, the STEP and TRACE commands displayed the contents of the 6502’s inter-
nal registers after each instruction. You can examine these registers at will or pre-set them when
you TRACE, STEP, or GO a machine language program.

The Monitor reserves five locations in memory for the five 6502 registers: A, X, Y, P (processor
status register), and S (stack pointer). The Monitor’s EXAMINE command, invoked by a
[CTRL E], tells the Monitor to display the contents of these locations on the screen, and lets the
location which holds the 6502’s A-register be the next changeable location. If you want to
change the values in these locations, just type a colon and the values separated by spaces. Next
time you give the Monitor a GO, STEP, or TRACE command, the Monitor will load these five
locations into their proper registers inside the 6502 before it executes the first instruction in your
program.

*|CTRL E

A=A X=FF Y=D8 P=Bf§ S=F8§
+:BO 02

+[CTRL E|

A=B@ X=¢2 Y=D8 P=Bf# S=F8
*306S

#306— CA DEX
A=B# X=01 Y=D8 P=30 S=F8
+S

$367— 8D 34 C# STA $Co39
A=B@# X=@1 Y=D8 P=3# S=F8
*S

#30A— 16 F6 BPL $9302
A=B# X=01 Y=D8 P=39 S=F8

53



MISCELLANEOUS MONITOR COMMANDS

You can control the setting of the Inverse/Normal location used by the COUT subroutine (see
page 32) from the Monitor so that all of the Monitor’s output will be in Inverse video. The
INVERSE command does this nicely. Input lines are still displayed in Normal mode, however.
To return the Monitor’s output to Normal mode, use the NORMAL command.

=0 .F

ggoé— 6A 6B 6C 6D OE G6F DO 04
gg0e8— C6 @1 F¥ 068 CA DF F6 A6
=]

=0 .F

@009— #A 9B ¢C gD GE 0F DO 64
#0p8— C6 ¢1 F¥ @8 CA DA F6 A6
=N

=0 .F

@000— 6A @B 6C 6D 6E 0F Dg @4
#9h8— C6 01 FP 68 CA DI F6 A6

*

The BASIC command, invoked by a [CTRL B], lets you leave the Monitor and enter. the language
installed in ROM on your Apple, usually either Apple Integer or Applesoft 11 BASIC. Any pro-
gram or variables that you had previously in BASIC will be lost. If you’ve left BASIC for the
Monitor and you want to re-enter BASIC with your program and variables intact, use the
(CONTINUE BASIC) command. If you have the Apple Disk Operating System (DOS)
active, the ‘3D@G’ command will return you to the language you were using, with your program
and variables intact.

The PRINTER command, activated by a [CTRL P], diverts all output normally destined for the
screen to an Apple Intelligent Interface® in a given slot in the Apple’s backplane. The slot
number should be from 1 to 7, and there should be an interface card in the given slot, or you will
lose control of your Apple and your program and variables may be lost. The format for the com-
mand is:

{slot number} [CTRL P

A PRINTER command to slot number @ will reset the flow of printed output back to the Apple’s
video screen.

The KEYBOARD command similarly substitutes the device in a given backplane slot for the
Apple’s keyboard. For details on how these commands and their BASIC counterparts PR# and

IN# work, please refer to ““‘CSW and KSW Switches’’, page 83. The format for the KEYBOARD
command is:

{slot number} [CTRL K

54



A slot number of @ for the KEYBOARD command will force the Monitor to listen for input from
the Apple’s built-in keyboard.

The Monitor will also perform simple hexadecimal addition and subtraction. Just type a line in
the format:

{value} + {value}
{value} — {value}

The Apple will perform the arithmetic and display the result:

*20+13
=33

+*4 A—C
=3E
*FF+4
=03
*3—4
=FF

*

SPECIAL TRICKS WITH THE MONITOR

You can put as many Monitor commands on a single line as you like, as long as you separate
them with spaces and the total number of characters in the line is less than 254. You can inter-
mix any and all commands freely, except the STORE (:) command. Since the Monitor takes all
values following a colon and places them in consecutive memory locations, the last value in a
STORE must be followed by a letter command before another address is encountered. The
NORMAL command makes a good separator; it usually has no effect and can be used anywhere.

*300.307 300:18 69 1 N 300.302 300S S

9300— 60 60 00 060 00 06 00 00
§3006— 18 69 g1

#300— 18 CLC
A=#4 X=p1 Y=D8 P=3§ S=F8
#301— 69 ¢1 ADC #301

A=#5 X=01 Y=D8 P=3§ S=F8

*
Single-letter commands such as L, S, I, and N need not be separated by spaces.
If the Monitor encounters a character in the input line which it does not recognize as either a

hexadecimal digit or a valid command character, it will execute all commands on the input line up
to that character, and then grind to a halt with a noisy beep, ignoring the remainder of the input

line.

The MOVE command can be used to replicate a pattern of values throughout a range in memory.

85



To do this, first store the pattern in its first position in the range:

*300:11 22 33

*

Remember the number of values in the pattern: in this case, 3. Then use this special arrange-
ment of the MOVE command:

{start+number} < {start} . {end—number} M

This MOVE command will first replicate the pattern at the locations immediately following the
original pattern, then re-replicate that pattern following itself, and so on until it fills the entire
range.

*303<300.32DM
«*300.32F

#36g— 11 22 33 11 22 33 11 22
#398— 33 11 22 33 11 22 33 11
#316— 22 33 11 22 33 11 22 33
#318— 11 22 33 11 22 33 11 22
$320— 33 11 22 33 11 22 33 11
#328— 22 33 11 22 33 11 22 33

*
A similar trick can be dohe with the VERIFY command to check whether a pattern repeats itself
through memory. This is especially useful to verify that a given range of memory locations all
contain the same value:

*300:0

*301<300.31FM

*301<300.31FV

*304:02

*301<300.31FV

#303—66 (92)

#394—02 (69)

*

You can create a command line which will repeat all or part of itself indefinitely by beginning the
part of the command line which is to be repeated with a letter command, such as N, and ending it
with the sequence 34:n, where n is a hexadecimal number specifying the character position of the
command which begins the loop; for the first character in the line, n=0. The value for »n must
be followed with a space in order for the loop to work properly.

*N 300 302 34:0

#306— 11

56



g362— 33

#300— 11
#392— 33
#300— 11
#3092— 33
g300— 11
#302— 33
#309— 11
g362— 33
g309— 11
#362— 33
930

*

The only way to stop a loop like this is to press |[RESET].

CREATING YOUR OWN COMMANDS

The USER ([CTRL Y]) command, when encountered in the input line, forces the Monitor to
jump to location number $3F8 in memory. You can put your own JMP instruction in this loca-
tion which will jump to your own program. Your program can then either examine the Monitor’s
registers and pointers or the input line itself. For example, here is a program which will make
the command act as a ‘‘comment’ indicator:

the will be displayed and ignored.

*F6.66G
1300:LDY $34
#300— A4 34
! LDA 200,Y
$302— B9 00
! JSR FDED
#305— 29 ED
! INY

#308— C8

! CMP #$8D

#309— C9 8D
! BNE 302

g36B— D@ F5
! JMP $FF69

#30D— 4C 69
13F8:IMP $300

p3F8— 4C 09

2

FD

FF

03

LDY

LDA

JSR

INY

BNE

$34

$6290,Y

$FDED

#$8D

$6302

$FF69

$0300

57

everything on the input line following



1$FF69G

«[CTRL Y] THIS IS A TEST.

THIS IS A TEST.

*

58



SUMMARY OF MONITOR COMMANDS

Summary of Monitor Commands.

Examining Memory.
{adrs)}

{adrs1}.{adrs2}

Changing the Contents of Memory.

{adrs}:{val} {val} ...

{val} {val} ...

Moving and Comparing.

{dest} < {start}.{end}M

{dest} < {start}.{end}V

Saving and Loading via Tape.

{start}.{end}W

{start}.{fend}R

Running and Listing Programs.

{adrs}G

{adrs}L

Examines the value contained in one location.

Displays the values contained in all locations
between {adrs1} and {adrs2}.

Displays the values in up to eight locations fol-
lowing the last opened location.

Stores the values in consecutive memory loca-
tions starting at {adrs}.

Stores values in memory starting at the next
changeable location.

Copies the values in the range {start}.{end} into
the range beginning at {dest}.

Compares the values in the range {start}.{end}
to those in the range beginning at {dest}.

Writes the values in the memory range
{start}.{fend} onto tape, preceded by a ten-
second leader.

Reads values from tape, storing them in
memory beginning at {start] and stopping at
{end}. Prints “ERR”’ if an error occurs.

Transfers control to the machine language pro-
gram beginning at {adrs}.

Disassembles and displays 20 instructions, start-
ing at {adrs}. Subsequent L’s will display 20
more instructions each.

59



Summary of Monitor Commands.

The Mini-Assembler

F666G

${command}

$FF69G

{adrs} S

{adrs} T

CTRL E

Miscellaneous.

I

N

CTRL B

CTRL C

{val} + {val}

{val} —{val}

{slot}

{slot}

* Not available in the Apple II Plus.
** Not available in the Autostart ROM.

Invoke the Mini-Assembler.*

Execute a Monitor command from the Mini-
Assembler.

Leave the Mini-Assembler.

Disassemble, display, and execute the instruc-
tion at {adrs}, and display the contents of the
6502’s internal registers. Subsequent S’s will

display and execute successive instructions.**

Step infinitely. The TRACE command stops
only when it executes a BRK instruction or

when you press [RESET].**

Display the contents of the 6502’s registers.

Set Inverse display mode.
Set Normal display mode.

Enter the language currently installed in the
Apple’s ROM.

Reenter the language currently installed in the
Apple’s ROM.

Add the two values and print the result.

Subtract the second value from the first and
print the result.

Divert output to the device whose interface
card is in slot number (slot}. If {slot}=0, then
route output to the Apple’s screen.

Accept input from the device whose interface
card is in slot number {slot}. If {slot}=0, then
accept input from the Apple’s keyboard.

Jump to the machine language subroutine at
location $3F8.

60



SOME USEFUL MONITOR SUBROUTINES

Here is a list of some useful subroutines in the Apple’s Monitor and Autostart ROMs. To use
these subroutines from machine language programs, load the proper memory locations or 6502
registers as required by the subroutine and execute a JSR to the subroutine’s starting address. It
will perform the function and return with the 6502’s registers set as described.

$SFDED CcouT Output a character

COUT is the standard character output subroutine. The character to be output should be in the
accumulator. COUT calls the current character output subroutine whose address is stored in
CSW (locations $36 and $37), usually COUT1 (see below).

$FDF¢ COUT1 Output to screen

COUT!1 displays the character in the accumulator on the Apple’s screen at the current output cur-
sor position and advances the output cursor. It places the character using the setting of the
Normal/Inverse location. It handles the control characters RETURN, linefeed, and bell. It
returns with all registers intact.

$SFE80 SETINV Set Inverse mode

Sets Inverse video mode for COUTI1. All output characters will be displayed as black dots on a
white background. The Y register is set to $3F, all others are unchanged.

SFE84 SETNORM  Set Normal mode

Sets Normal video mode for COUT1. All output characters wwill be displayed as white dots on a
black background. The Y register is set to $FF, all others are unchanged.

$FDSE CROUT Generate a RETURN
CROUT sends a RETURN character to the current output device.
$SFDSB CROUT1 RETURN with clear

CROUT1 clears the screen from the current cursor position to the edge of the text window, then
calls CROUT.

$SFDDA PRBYTE Print a hexadecimal byte

This subroutine outputs the contents of the accumulator in hexadecimal on the current output
device. The contents of the accumulator are scrambled.

$FDE3 PRHEX Print a hexadecimal digit

This subroutine outputs the lower nybble of the accumulator as a single hexadecimal digit. The
contents of the accumulator are scrambled.

$F941 PRNTAX Print A and X in hexadecimal

This outputs the contents of the A and X reisters as a four-digit hexadecimal value. The accu-
mulator contains the first byte output, the X register contains the second. The contents of the

61



accumulator are usually scrambled.
$F948 PRBLNK Print 3 spaces

Outputs three blank spaces to the standard output device. Upon exit, the accumulator usually
contains $A0, the X register contains @.

$F94A PRBL2 Print many blank spaces

This subroutine outputs from 1 to 256 blanks to the standard output device. Upon entry, the X
register should contain the number of blanks to be output. If X=9$0@, then PRBL2 will output
256 blanks.

SFF3A BELL Output a “‘bell” character

This subroutine sends a bell (CTRL G) character to the current output device. It leaves the
accumulator holding $87.

$FBDD BELL1 Beep the Apple’s speaker

This subroutine beeps the Apple’s speaker for .1 second at 1KHz. It scrambles the A and X
registers.

$FDIC RDKEY Get an input character

This is the standard character input subroutine. It places a flashing input cursor on the screen at
the position of the output cursor and jumps to the current input subroutine whose address is
stored in KSW (locations $38 and $39), usually KEYIN (see below).

$FD35 RDCHAR Get an input character or ESC code

RDCHAR is an alternate input subroutine which gets characters from the standard input, but also
interprets the eleven escape codes (see page 34).

$FD1B KEYIN Read the Apple’s keyboard
This is the keyboard input subroutine. It reads the Apple’s keyboard, waits for a keypress, and

randomizes the random number seed (see page 32). When it gets a keypress, it removes the
flashing cursor and returns with the keycode in the accumulator.

$FD6A GETLN Get an input line with prompt

GETLN is the subroutine which gathers input lines (see page 33). Your programs can call
GETLN with the proper prompt character -in-lqcation $33; GETLN will return with the input line
in the input buffer (beginning at locatior\l $200)\and the X register holding the length of the input
line. =

$FD67 GETLNZ Get an input line

GETLNZ is an alternate entry point for GETLN which issues a carriage return to the standard
output before falling into GETLN (see above).

62



$FD6F GETLN1 Get an input line, no prompt

GETLN1 is an alternate entry point for GETLN which does not issue a prompt before it gathers
the input line. If, however, the user cancels the input line, either with too many backspaces or
with a [CTRL X], then GETLN1 will issue the contents of location $33 as a prompt when it gets
another line.

$FCAS WAIT Delay

This subroutine delays for a specific amount of time, then returns to the program which called it.
The amount of delay is specified by the contents of the accumulator. With A the contents of the
accumulator, the delay is 2(26+27A +5A2) pseconds. WAIT returns with the A register zeroed
and the X and Y registers undisturbed. ‘

$F864 SETCOL Set Low-Res Graphics color

This subroutine sets the color used for plotting on the Low-Res screen to the color passed in the
accumulator. See page 17 for a table of Low-Res colors.

$F85F NEXTCOL Increment color by 3

This adds 3 to the current color used for Low-Res Graphics.

$F800 PLOT Plot a block on the Low-Res screen

This subroutine plots a single block on the Low-Res screen of the prespecified color. The block’s
vertical position is passed in the accumulator, its horizontal position in the Y register. PLOT
returns with the accumulator scrambled, but X and Y unmolested.

$F819 HLINE Draw a horizontal line of blecks

This subroutine draws a horizontal line of blocks of the predetermined color on the Low-Res
screen. You should call HLINE with the vertical coordinate of the line in the accumulator, the

leftmost horizontal coordinate in the Y register, and the rightmost horizontal coordinate in loca-
tion $2C. HLINE returns with A and Y scrambled, X intact.

$F828 VLINE Draw a vertical line of blocks

This subroutine draws a vertical line of blocks of the predetermined color on the Low-Res screen.
You should call VLINE with the horizontal coordinate of the line in the Y register, the top verti-
cal coordinate in the accumulator, and the bottom vertical coordinate in location $2D. VLINE
will return with the accumulator scrambled.

$F832 CLRSCR Clear the entire Low-Res screen

CLRSCR clears the entire Low-resolution Graphics screen. If you call CLRSCR while the video
display is in Text mode, it will fill the screen with inverse-mode ‘@’ characters. CLRSCR des-
troys the contents of A and Y.

$F836 CLRTOP Clear the top of the Low-Res screen

CLRTOP is the same as CLRSCR (above), except that it clears only the top 40 rows of the
screen.

63



$F871 SCRN Read the Low-Res screen

This subroutine returns the color of a single block on the Low-Res screen. Call it as you would
call PLOT (above). The color of the block will be returned in the accumulator. No other regis-
ters are changed.

$FB1E PREAD Read a Game Controller

PREAD will return a number which represents the position of a game controller. You should
pass the number of the game controller (@ to 3) in the X register. If this number is not valid,
strange things may happen. PREAD returns with a number from $00 to $FF in the Y register.
The accumulator is scrambled.

$FF2D PRERR Print “ERR”

Sends the word “ERR”, followed by a bell character, to the standard output device. The accu-
mulator is scrambled.

$FF4A IOSAVE Save all registers

The contents of the 6502’s internal registers are saved in locations $45 through $49 in the order
A-X-Y-P-S. The contents of A and X are changed; the decimal mode is cleared.

$FF3F IOREST Restore all registers

The contents of the 6502’s internal registers are loaded from locations $45 through $49.

64



MONITOR SPECIAL LOCATIONS

Table 14: Page Three Monitor Locations

Address: Use:

Decimal  Hex Monitor ROM  Autostart ROM
1008 $3F0 Holds the address
1009 $3F1 of the subroutine

which handles
None. :
machine language
“BRK’  requests
(normally $FAS59).
igi? gggg None. Soft Entry Vector.
1012 $3F4 None. Power-up Byte.
1013 $3F5 | Holds a “‘JuMP”’ instruction to the
1014 $3F6 | subroutine which handles Applesoft II
1015 $3F7 | ‘& commands.* Normally $4C $58
$FF.
1016 $3F8 | Holds a ‘“‘JuMP”’ instruction to the
1017 $3F9 | subroutine which handles ‘““USER”
1018 $3FA | ([CTRL Y]) commands.
1019 $3FB | Holds a ‘‘JuMP’’ instruction to the
1020 $3FC | subroutine  which handles Non-
1021 $3FD | Maskable Interrupts.
1022 $3FE | Holds the address of the subroutine
1023 $3FF | which handles Interrupt.ReQuests.

* See page 123 in the Applesoft IT BASIC Reference Manual.

65




MINI-ASSEMBLER INSTRUCTION FORMATS

The Apple Mini-Assembler recognizes 56 mnemonics and 13 addressing formats used in 6502
Assembly language programming. The mnemonics are standard, as used in the MOS
Technology/Synertek 6500 Programming Manual (Apple part number A2L0003), but the
addressing formats are different. Here are the Apple standard address mode formats for 6502
Assembly Language:

Table 15; Mini-Assembler Address Formats
Mode: Format:
Accumulator None.
Immediate #${value}
Absolute ${address}
Zero Page ${address}
Indexed Zero Page  ${address},X
${address},Y
Indexed Absolute  ${address},X
${address},Y
Implied None.
Relative ${address}
Indexed Indirect (${address},X)
Indirect Indexed (${address}),Y
Absolute Indirect (${address})

An {address} consists of one or more hexadecimal digits. The Mini-Assembler interprets
addresses in the same manner that the Monitor does: if an address has fewer than four digits, it
adds leading zeroes; if it has more than four digits, then it uses only the last four.

All dollar signs ($), signifying that the addresses are in hexadecimal notation, are ignored by the
Mini-Assembler and may be omitted.

There is no syntactical distinction between the Absolute and Zero Page addressing modes. If you
give an instruction to the Mini-Assembler which can be used in both Absolute and Zero-Page
mode, then the Mini-Assembler will assemble that instruction in Absolute mode if the operand
for that instruction is greater than $FF, and it will assemble that instruction in Zero Page mode if
the operand for that instruction is less than $0100.

Instructions with the Accumulator and Implied addressing modes need no operand.

Branch instructions, which use the Relative addressing mode, require the targer address of the
branch. The Mini-Assembler will automatically figure out the relative distance to use in the
instruction. If the target address is more than 127 locations distant from the instruction, then the
Mini-Assembler wil sound a “‘beep”, place a circumfex (*) under the target address, and ignore
the line.

If you give the Mini-Assembler the mnemonic for an instruction and an operand, and the

addressing mode of the operand cannot be used with the instruction you entered, then the Mini-
Assembler will not accept the line.

66



CHAPTER 4
MEMORY ORGANIZATION




The Apple’s 6502 microprocessor can directly reference a total of 65,536 distinct memory loca-
tions. You can think of the Apple’s memory as a book with 256 “‘pages’’, with 256 memory loca-
tions on each page. For example, ‘‘page $30”" is the 256 memory locations beginning at location
$3000 and ending at location $30FF. Since the 6502 uses two eight-bit bytes to form the address
of any memory location, you can think of one of the bytes as the page number and the other as
the location within the page.

The Apple’s 256 pages of memory fall into three categories: Random Access Memory (RAM),
Read-Only Memory (ROM), and Input/Output locations (I/0). Different areas of memory are
dedicated to different functions. The Apple’s basic memory map looks like this:

System Memory Map
Page Number:
Decimal Hex
0 $00
1 $01
2 $02
' ’ RAM (48K)
190 SBE
191 $BF
192 $Co
193 $C1
‘ ) 1/0 (2K)
198 $C6
199 $C7
200 $C8
201 $C9

I/0 ROM (2K)

206  SCE
207 $CF
208 $D@
209 $D1
' ' ROM (12K)
254 SFE
255 $FF

Figure 5. System Memory Map

RAM STORAGE

The area in the Apple’s memory map which is allocated for RAM memory begins at the bottom

68



of Page Zero and extends up to the end of Page 191. The Apple has the capacity to house from
4K (4,096 bytes) to 48K (49,152 bytes) of RAM on its main circuit board. In addition, you can
expand the RAM memory of your Apple all the way up to 64K (65,536 bytes) by installing an
Apple Language Card (part number A2B0006). This extra 16K of RAM takes the place of the
Apple’s ROM memory, with two 4K segments of RAM sharing the 4K range from $D@0@ to
$DFFF.

Most of your Apple’s RAM memory is available to you for the storage of programs and data.
The Apple, however, does reserve some locations in RAM for use of the System Monitor, vari-
ous languages, and other system functions. Here is a map of the available areas in RAM
memory:

Table 16: RAM Organization and Usage
Page Number: .
Decimal Hex Used For:
0 $09 | System Programs
1 $01 | System Stack
2 $02 | GETLN Input Buffer
3 $03 | Monitor Vector Locations
4 $04
5 $05 | Text and Lo-Res Graphics
6 $06 | Primary Page Storage
7 $07
8 $08
9 $09 | Text and Lo-Res Graphics
10 $0A | Secondary Page Storage
11 $0B
FREE
12 $oC
through
31 $1F
RAM
32 $20 | Hi-Res Graphics
through Primary Page
63 $3F | Storage
64 $40 | Hi-Res Graphics
through Secondary Page
95 $5F | Storage
96 $60
through
191 $BF

Following is a breakdown of which ranges are assigned to which functions:

Zero Page. Due to the construction of the Apple’s 6502 microprocessor, the lowermost page in
the Apple’s memory is prime real estate for machine language programs. The System Monitor
uses about 20 locations on Page Zero; Apple Integer BASIC uses a few more; and Applesoft II
BASIC and the Apple Disk Operating System use the rest. Tables 18, 19, 20, and 21 show the
locations on zero page which are used by these system functions.

Page One. The Apple’s 6502 microprocessor reserves all 256 bytes of Page 1 for use as a

“stack’. Even though the Apple usually uses less than half of this page at any one time, it is not
easy to determine just what is being used and what is lying fallow, so you shouldn’t try to use

69



Page 1 to store any data.

Page Two. The GETLN subroutine, which is used to get input lines by most programs and
languages, uses Page 2 as its input buffer. If you’re sure that you won’t be typing any long input
lines, then you can (somewhat) safely store temporary data in the upper regions of Page 2.

Page Three. The Apple’s Monitor ROM (both the Autostart and the original) use the upper six-
teen locations in Page Three, from location $3F@ to $3FF (decimal 1008 to 1023). The
Monitor’s use of these locations is outlined on page 62.

Pages Four through Seven. This 1,024-byte range of memory locations is used for the Text and
Low-Resolution Graphics Primary Page display, and is therefore unusable for storage purposes.
There are 64 locations in this range which are not displayed on the screen. These 64 locations are
reserved for use by the peripheral cards (see page 82).

RAM CONFIGURATION BLOCKS

The Apple’s RAM memory is composed of eight to 24 integrated circuits. These IC’s reside in
three rows of sockets on the Apple board. Each row can hold eight chips of either the 4,096-bit
(4K) or 16,384-bit (16K) variety. The 4K RAM chips are of the Mostek ‘4096 family, and
may be marked ‘“MK4096” or “MCM6604”". The 16K chips are of the ““4116” type, and may
have the denomination ““MK4116”" or ‘“UPD4160>’. Each row must have eight of the same type
of chip, although different rows may hold different types.

A row of eight 16K IC’s represents 16,384 eight-bit bytes of RAM. The leftmost IC in a row
represents the lowermost (least significant) bit of every byte in that range, and the rightmost IC
in a row represents the uppermost (most significant) bit of every byte. The row of RAM IC’s
which is frontmost on the Apple board holds the RAM memory which begins at location @ in the
memory map; the next row back continues where the first left off.

You can tell the Apple how much memory it has, and of what type it is, by plugging Memory
Configuration Blocks into three IC sockets on the left side of the Apple board. These
configuration blocks are three 14-legged critters which look like big, boxy integrated circuits. But
there are no chips inside of them; only three jumper wires in each. The jumper wires ‘“‘strap”’
each row of RAM chips into a specific place in the Apple’s memory map. All three configuration
blocks should be strapped the same way. Apple supplies several types of standard configuration
blocks for the most common system sizes. A set of these was installed in your Apple when it was
built, and you get a new set each time you purchase additional memory for your Apple. If, how-
ever, you want to expand your Apple’s memory with some RAM chips that you did not purchase
from Apple, you may have to construct your own configuration blocks (or modify the ones
already in your Apple).

There are nine different RAM memory configurations possible in your Apple. These nine

memory sizes are made up from various combinations of 4K and 16K RAM chips in the three
rows of sockets in your Apple. The nine memory configurations are:

70



$Cooo

$B00O
$A000 | 16K
$9000

4K

$8000

$7000
$6000

16K | 16K | 16K 4K

$5000

4K | 4K

$4000
$3000

4K
$2000 | 16K | 16K | 16K | 16K | 16K | 16K

4K | 4K
$1000

4K | 4K | 4K

$0000
System
Size

48K 36K 32K 24K 20K 16K 12K 8K 4K

Figure 6. Memory Configurations

Of the fourteen ‘‘legs’’ on each controller block, the three in the upper-right corner (looking at it
from above) represent the three rows of RAM chips on the Apple’s main board. There should
be a wire jumper from each one of these pins to another pin in the configuration block. The
“other pin” corresponds to a place in the Apple’s memory map where you want the RAM chips
in each row to reside. The pins on the configuration block are represented thus:

4K range $0000-$SOFFF | / O 14 | Frontmost row (*‘C’")
4K range $1000-$1FFF | 2 13 | Middle row (““D’")
4K range $2000-$2FFF | 3 12 | Backmost row (“E’’)
4K range $3000-$3FFF | 4 11 | No connection.

4K range $4000-$4FFF | 5 10 | 16K range $0000-$3FFF
4K range $5000-$5FFF | 6 9 | 16K range $4000-$7FFF
4K range $8000-$8FFF | 7 8 | 16K range $8000-$BFFF

Figure 7. Memory Configuration
Block Pinouts

If a row contains eight chips of the 16K variety, then you should connect a jumper wire from the
pin corresponding to that row to a pin corresponding to a 16K range of memory. Similarly, if a
row contains eight 4K chips, you should connect a jumper wire from the pin for that row to a pin
corresponding to a 4K range of memory. You should never put 4K chips in a row strapped for
16K, or vice versa. It is also not advisable to leave a row unstrapped, or to strap two rows into
the same range of memory.

You should always make sure that there is some kind of memory beginning at location @. Your

Apple’s memory should be in one contiguous block, but it does not need to be. For example, if
you have only three sets of 4K chips, but you want to use the primary page of the High-

71



Resolution Graphics mode, then you would strap one row of 4K chips to the beginning of
memory (4K range $8000 through $0FFF), and strap the other two rows to the memory range
used by the High-Resolution Graphics primary page (4K ranges $2000 through $2FFF and $3000
through $3FFF). This will give you 4K bytes of RAM memory to work with, and 8K bytes of
RAM to be used as a picture buffer.

Notice that the configuration blocks are installed into the Apple with their front edges (the edge
with the white dot, representing pin 1) towards the front of the Apple.

There is a problem in Apples with Revision @ boards and 20K or 24K of RAM. In these systems,
the 8K range of the memory map from $4000 to $5SFFF is duplicated in the memory range $6000
to $7FFF, regardless of whether it contains RAM or not. So systems with only 20K or 24K of
RAM would appear to have 24K or 36K, but this extra RAM would be only imaginary. This has
been changed in the Revision 1 Apple boards.

ROM STORAGE

The Apple, in its natural state, can hold from 2K (2,048 bytes) to 12K (12,288 bytes) of Read-
Only memory on its main board. This ROM memory can include the System Monitor, a couple
of dialects of the BASIC language, various system and utility programs, or pre-packaged
subroutines such as are included in Apple’s Programmer’s Aid #1 ROM.

The Apple’s ROM memory resides in the top 12K (48 pages) of the memory map, beginning at
location $D@@0. For proper operation of the Apple, there must be some kind of ROM in the
upppermost locations of memory. When you turn on the Apple’s power supply, the microproces-
sor must have some program to execute. It goes to the top locations in the memory map for the
address of this program. In the Apple, this address is stored in ROM, and is the address of a pro-
gram within the same ROM. This program initializes the Apple and lets you start to use it. (For
a description of the startup cycle, see ““The RESET Cycle”’, page 36.)

Here is a map of the Apple’s ROM memory, and of the programs and packages that Apple
currently supports in ROM:

Table 17: ROM Organization and Usage
Page Number: .
Decimal  Hex Used By:
g?g ggg Programmer’s Aid #1
216 $D8
220 $DC Applesoft
224 SEO 11
228 $E4 BASIC
232 $SE8 Integer BASIC
236 $EC
240 SFO
244 $F4 Utility Subroutines
o8 ggg Monitor ROM Autostart ROM

72



Six 24-pin IC sockets on the Apple’s board hold the ROM integrated circuits. Each socket can
hold one of a type 9316B 2,048-byte by 8-bit Read-Only Memory. The leftmost ROM in the
Apple’s board holds the upper 2K of ROM in the Apple’s memory map; the rightmost ROM IC
holds the ROM memory beginning at page $D@ in the memory map. If a ROM is not present in
a given socket, then the values contained in the memory range corresponding to that socket will
be unpredictable.

The Apple Firmware card can disable some or all of the ROMs on the Apple board, and substi-
tute its own ROMs in their place. When you have an Apple Firmware card installed in any slot in
the Apple’s board, you can disable the Apple’s on-board ROMs by flipping the card’s controller
switch to its UP position and pressing and releasing the button, or by referencing location
$CO80 (decimal 49280 or -16256). To enable the Apple’s on-board ROMs again, flip the con-
troller switch to the DOWN position and press [RESET], or reference location $C@81 (decimal
49281 or -16255). For more information, see Appendix A of the Applesoft II BASIC Program-
ming Reference Manual.

I/0 LOCATIONS

4,096 memory locations (16 pages) of the Apple’s memory map are dedicated to input and output
functions. This 4K range begins at location $C000 (decimal 49152 or -16384) and extends on up
to location $CFFF (decimal 53247 or -12289). Since these functions are somewhat intricate, they
have been given a chapter all to themselves. Please see Chapter 5 for information on the alloca-
tion of Input/Output locations.

73



ZERO PAGE MEMORY MAPS

Table 18: Monitor Zero Page Usage

Decimal

Hex

$00
$10
$20
$30
$40
$50
$60
$70
380
$90
$A0
$B0
$Co
$D¢
SEQ
$F0

2
$2

3
33

4
$4

5
85

6

$6

7
$7

8
$8

9

10
$9 $A

11
$B

12
$C

13
$D

14
$E

15
$F

Table 19:

Applesoft I1 BASIC Zero Page Usage

Decimal

Hex

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
$A0
$BO
$Co
$D9
$E0
$Fp

2
$2

3
$3

4
$4

5
85

6

7

$6 $7

8
$8

9

10

11

$9 $A $B-

12

13

$C $D

14
SE

15
$F

74




Table 20: Apple DOS 3.2 Zero Page Usage

Decimal

Hex

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
SAQ
$B0
$Co
$D0
$E0
$F0

0

1
$1

2 3 4 5 6 7 8 9 10
$2 83 $4 85 $6 §7 $8 §9 $A

11

12

13

14

$B $C $D SE

15
$F

Table 21: Integer BASIC Zero Page Usage

Decimal

Hex

$00
$10
$20
$30
$40
$50
$60
$70
$80
$90
SAD
$B0
$Co
$Do
$E0
$F0

1
$1

2 3 4 5 6 71 8 9 10
$2 83 $4 $5 $6 $7 $8 $9 SA

11
$B

12
$C

13

$D

14
$E

15
$F

75




76



CHAPTER
INPUT/OUTPUT STRUCTURE



The Apple’s Input and Output functions fall into two basic categories: those functions which are
performed on the Apple’s board itself, and those functions which are performed by peripheral
interface cards plugged into the Apple’s eight peripheral ‘‘slots’’. Both of these functions com-
municate to the microprocessor and your programs via 4,096 locations in the Apple’s memory
map. This chapter describes the memory mapping and operation of the various input and output
controls and functions; the hardware which executes these functions is described in the next
chapter.

BUILT-IN I/0

Most of the Apple’s inherent I/0 facilities are described briefly in Chapter 1, ‘‘Approaching your
Apple”’. For a short description of these facilities, please see that chapter.

The Apple’s on-board I/0 functions are controlled by 128 memory locations in the Apple’s
memory map, beginning at location $C@0@ and extending up through location $C@7F (decimal
49152 through 49279, or -16384 through -16257). Twenty-seven different functions share these
128 locations. Obviously, some functions are affected by more than one location: in some
instances, as many as sixteen different locations all can perform exactly the same function. These
128 locations fall into five types: Data Inputs, Strobes, Soft Switches, Toggle Switches, and Flag
Inputs.

Data Inputs. The only Data Input on the Apple board is a location whose value represents the
current state of the Apple’s built-in keyboard. The uppermost bit of this input is akin to the Flag
Inputs (see below); the lower seven bits are the ASCII code of the key which was most recently
pressed on the keyboard.

Flag Inputs. Most built-in input locations on the Apple are single-bit ‘flags’. These flags appear
in the highest (eighth) bit position in their respective memory locations. Flags have only two
values: ‘on’ and ‘off’. The setting of a flag can be tested easily from any language. A higher-
level language can use a “PEEK”’ or similar command to read the value of a flag location: if the
PEEKed value is greater than or equal to 128, then the flag is on; if the value is less than 128,
the flag is off. Machine language programs can load the contents of a flag location into one of the
6502’s internal registers (or use the BIT instruction) and branch depending upon the setting of
the N (sign) flag. A BMI instruction will cause a branch if the flag is on, and a BPL instruction
will cause a branch if the flag is off.

The Single-Bit (Pushbutton) inputs, the Cassette input, the Keyboard Strobe, and the Game Con-
troller inputs are all of this type.

Strobe Outputs. The Utility Strobe, the Clear Keyboard Strobe, and the Game Controller Strobe
are all controlled by memory locations. If your program reads the contents of one of these loca-
tions, then the function associated with that location will be activated. In the case of the Utility
Strobe, pin 5 on the Game /O connector will drop from +35 volts to 0 volts for a period of .98
microseconds, then rise back to +5 again; in the case of the Keyboard Strobe, the Keyboard’s
flag input (see above) will be turned off; and in the case of the Game Controller Strobe, all of the
flag inputs of the Game Controllers will be turned off and their timing loops restarted.

Your program can also trigger the Keyboard and Game Controller Strobes by writing to their con-
trolling locations, but you should not write to the Ultility Strobe location. If you do, you will pro-
duce two .98 microsecond pulses, about 24.43 nanoseconds apart. This is due to the method in
which the 6502 writes to a memory location: first it reads the contents of that location, then it

78



writes over them. This double pulse will go unnoticed for the Keyboard and Game Controller
Strobes, but may cause problems if it appears on the Utility Strobe.

Toggle Switches. Two other strobe outputs are connected internally to two-state ““flip-flops™’.
Each time you read from the location associated with the strobe, its flip-flop will “‘toggle’ to its
other state. These toggle switches drive the Cassette Output and the internal Speaker. There is
no practical way to determine the setting of an internal toggle switch. Because of the nature of
the toggle switches, you should only read from their controlling locations, and not write to them
(see Strobe Outputs, above).

Soft Switches. Soft Switches are two-position switches in which each side of the switch is con-
trolled by an individual memory location. If you reference the location for one side of the
switch, it will throw the switch that way; if you reference the location for the other side, it will
throw the switch the other way. It sets the switch without regard to its former setting, and there
is no way to determine the position a soft switch is in. You can safely write to soft switch con-
trolling locations: two pulses are as good as one (see Strobe Outputs, above). The Annunciator
outputs and all of the Video mode selections are controlled by soft switches.

The special memory locations which control the built-in Input and Output functions are arranged
thus:

Table 22: Built-In I/0 Locations
80 $1 $2 $3 $4 $5 $6 37 $8 $9 $A $B S$C S$D SE SF
$COPB | Keyboard Data Input
$CA10 | Clear Keyboard Strobe
$CP20 | Cassette Output Toggle
$C030 | Speaker Toggle
$CP40 | Utility Strobe
$COSO | g | tx | nomix | mix | pri | sec | lores | hires and anl an2 an3
$C060 cin | pbl pb2 pb3 | gcb | gel gc2 gc3 repeat $CO60-$CO67
$C@70 | Game Controller Strobe

Key to abbreviations:

gr  Set GRAPHICS mode tx Set TEXT mode
nomix  Set all text or graphics mix  Mix text and graphics
pri  Display primary page sec  Display secondary page

lores Display Low-Res Graphics  hires  Display Hi-Res Graphics

an  Annunciator outputs pb  Pushbutton inputs
gc  Game Controller inputs cin  Cassette Input

PERIPHERAL BOARD 1/0

Along the back of the Apple’s main board. is a row of eight long “‘slots’’, or Peripheral Connec-
tors. Into seven of these eight slots, you can plug any of many Peripheral Interface boards
designed especially for the Apple. In order to make the peripheral cards simpler and more versa-
tile, the Apple’s circuitry has allocated a total of 280 byte locations in the memory map for each

79



of seven slots. There is also a 2K byte ‘‘common area’’, which all peripheral cards in your Apple
can share.

Each slot on the board is individually numbered, with the leftmost slot called ““Slot > and the
rightmost called “‘Slot 7. Slot @ is special: it is meant for RAM, ROM, or Interface expansion.
All other slots (1 through 7) have special control lines going to them which are active at different
times for different slots.

PERIPHERAL CARD I/0 SPACE

Each slot is given sixteen locations beginning at location $C080 for general input and output pur-
poses. For slot @, these sixteen locations fall in the memory range $C080 through $C@8F; for
slot 1, they’re in the range $C090 through $C@IF, er cetera. Each peripheral card can use these
locations as it pleases. Each peripheral card can determine when it is being selected by listening to
pin 41 (called DEVICE SELECT) on its peripheral connector. Whenever the voltage on this pin
drops to 0 volts, the address which the microprocessor is calling is somewhere in that peripheral
card’s 16-byte allocation. The peripheral card can then look at the bottom four address lines to
determine which of its sixteen addresses is being called.

Table 23: Peripheral Card 1/0 Locations
9 81 $2 $3 $4 $5 $6 $7 $8 $9 $A S$B $C SD SE $F
$CO80 0
$C090 1
$COAD 2
$COBO Input/Output for slot number 3
$Coco 4
$CODO 5
$COED 6
$SCOFQ 7

PERIPHERAL CARD ROM SPACE

Each peripheral slot also has reserved for it one 256-byte page of memory. This page is usually
used to house 256 bytes of ROM or Programmable ROM (PROM) memory, which contains driv-
ing programs or subroutines for the peripheral card. In this way, the peripheral interface cards

can be “‘intelligent”: they contain their own driving software; you do not need to load separate
programs in order to use the interface cards.

The page of memory reserved for each peripheral slot has the page number $Cn, where # is the
slot number. Slot @ does not have a page reserved for it, so you cannot use most Apple interface
cards in that slot. The signal on Pin 1 (called I/O SELECT) of each peripheral slot will become
active (drop from +35 volts to ground) when the microprocessor is referencing an address within
that slot’s reserved page. Peripheral cards can use this signal to enable their PROMs, and use the
lower eight address lines to address each byte in the PROM.

80



Table 24: Peripheral Card PROM Locations
SO0 $10 $20 $30 540 $50 $60 $70 $80 $90 SAG $BO $CO S$SDP SEO SFO
$C100 1
$C200 2
$C300 3
$C400 PROM space for slot number 4
$C500 5
$C600 6
$C700 7

I/0 PROGRAMMING SUGGESTIONS

The programs in peripheral card PROMs should be portable; that is, they should be able to func-
tion correctly regardless of where they are placed in the Apple’s memory map. They should con-
tain no absolute references to themselves. They should perform all JuMPs with conditional or
forced branches.

Of course, you can fill a peripheral card PROM with subroutines which are not portable, and your
only loss would be that the peripheral card would be slot-dependent. If you’re cramped for space
in a peripheral card PROM, you can save many bytes by making the subroutines slot-dependent.

The first thing that a subroutine in a peripheral card PROM should do is to save the values of all
of the 65@2’s internal registers. There is a subroutine called IOSAVE in the Apple’s Monitor
ROM which does just this. It saves the contents of all internal registers in memory locations $45
through $49, in the order A-X-Y-P-S. This subroutine starts at location $FF4A. A companion
subroutine, called IORESTORE, restores all of the internal registers from these storage locations.
You should call this subroutine, located at $FF3F, before your PROM subroutine finishes.

Most single-character input and output is passed in the 6502’s Accumulator. During output, the
character to be displayed is in the Accumulator, with its high bit set. During input, your
subroutine should pass the character received from the input device in the Accumulator, also
with its high bit set.

A program in a peripheral card’s PROM can determine which slot the card is plugged into by exe-
cuting this sequence of instructions:

0300 - 20 4A FF JSR $FF4A
0303- 78 SEI
0304 - 29 58 FF JSR $FF58
0307 - BA TSX

D308 - BD 00 01 LDA $0100,X
030B- 8D F8 07 STA $PTF8

0 30E- 29 OF AND #$0F
0310- A8 TAY

After a program executes these steps, the slot number which its card is in will be stored in the
6502°s Y index register in the format $0x, where # is the slot number. A program in the ROM
can further process this value by shifting it four bits to the left, to obtain $nb.

D311- 98 TYA

81



0312- 0A ASL

9313- A ASL
0314- DA ASL
#315- A ASL
0316- AA TAX

A program can use this number in the X index register with the 6502’s indexed addressing mode
to refer to the sixteen I/0 locations reserved for each card. For example, the instruction

0317- BD 89 C# LDA $Co80,X

will load the 6502’s accumulator with the contents of the first I/O location used by the peripheral
card. The address $C@80 is the base address for the first location used by all eight peripheral
slots. The address $C@81 is the base address for the second 1/O location, and so on. Here are
the base addresses for all sixteen 1/0 locations on each card:

Table 25: 1/0 Locatioin Base Addresses

Base Slot
Address 0 1 2 3 4 5 6 7

$C080 $CO80  $CO90 $CoA0  $COBD $COCe  $CODO $COED $COFo
$Co81 $Co81 $C0o91 $COA1 $COB1 $CoC1 $CoD1 SCOE1 $COF1
$C082 $C082 $C092 $COA2 $CoB2 $COC2  $COD2 $COE2 $COF2
$C083 $C083 $C093 $COA3 $COB3 $CoOC3 $COD3 $COE3 $COF3
$C084 $C084  $CP94 $SCOA4 $CoB4 $CPC4  $COD4 $COE4 $CoOF4
$Co85 $C085 $C095 $COAS $COBs $COCs  $CODS $COES $COF5
$C086 $C086  $C096 $CoOA6 $COB6 $COC6  3COD6 $COE6 $COF6
$C087 $Ce87  $C097 SCOA7 $CoB7 $coec7  $CcoD7 $COE7 $SCOF7
$C088 $C088  $CP98 $COAS8 $C0OBS $CoOC8  $CODS $COE8 $COF8
$C089 $C0O89  $C099 $C0OA9 $COBY $COCY  $CODY $COE9 $COF9
$SCO8A SCO8A  $CP9A $COAA S$SCOBA $COCA S$COIDA $COEA  $COFA
$C@8B $C08B  $C#9B  $COAB S$COBB $COCB $CODB S$SCOEB  $COFB
$Co8C 8CO8C  8CAIC  $COAC $CABC $COCC $CODC  $CPEC  SCOFC
$C0O8D $CP8D $CO9D $COAD $CPBD $COCD $CODD $CPED S$COFD
$SCOSE SCO8E  $CP9E  SCOAE S$CPBE S$COCE S$COIDE $COEE  S$COFE
$CO8F S8CO8F  $CO9F  SCOAF S$COBF S$COCF SCODF $COEF  $COFF
I/0 Locations

PERIPHERAL SLOT SCRATCHPAD RAM

Each of the eight peripheral slots has reserved for it 8 locations in the Apple’s RAM memory.
These 64 locations are actually in memory pages $04 through $07, inside the area reserved for the
Text and Low-Resolution Graphics video display. The contents of these locations, however, are
not displayed on the screen, and their contents are not changed by normal screen operations.*
The peripheral cards can use these locations for temporary storage of data while the cards are in
operation. These ‘‘scratchpad’’ locations have the following addresses:

* See “‘But Soft...”", page 31.

82



Table 26: 1/0 Scratchpad RAM Addresses
Base Slot Number

Address | 1 2 3 4 S 6 7

$0478 $0479 $047A $047B  $047C $047D  S$P4TE  $O4TF
$04F8 $04F9 $O4FA S$04FB  $04FC $04FD SO4FE  $O4FF
$0578 $0579 $057A  $057B  $057C  $657D  $@STE  $OSTF
$05F8 $05F9 $OSFA  $05FB  $0SFC $65FD $O5FE  $OSFF
$0678 $0679 $067A  $067B  $067C  $067D  $B6TE  $O6TF
$06F8 $06F9 $06FA $06FB $P6FC $06FD $O6FE  $O6FF
$0778 $0779 $077A  $077B  $077C $677D  $077E  $@7TF
$07F8 $07F9 $OTFA $O7FB $O7TFC $07FD S$@TFE  S$OTFF

Slot @ does not have any scratchpad RAM addresses reserved for it. The Base Address locations
are used by Apple DOS 3.2 and are also shared by all peripheral cards. Some of these locations
have dedicated functions: location $7F8 holds the slot number (in the format $Cn) of the peri-
pheral card which is currently active, and location $5F8 holds the slot number of the disk con-
troller card from which any active DOS was booted.

By using the slot number $0n, derived in the program example above, a subroutine can directly
reference any of its eight scratchpad locations:

031A- B9 78 04 LDA $0478.Y
#31D- 99 F8 04 STA $04F8.,Y
0320- B9 78 05 LDA $0578.,Y
0323- 99 F8 05 STA $0S5SF8.,Y
0326- B9 78 06 LDA $0678.,Y
0329- 99 F8 06 STA $06F8,Y
932C- B9 78 07 LDA $0778.,Y
D32F- 99 F8 07 STA $07F8.Y

THE CSW/KSW SWITCHES

The pair of locations $36 and $37 (decimal 54 and 55) is called CSW, for ‘“‘Character output
SWitch’’. Individually, location $36 is called CSWL (CSW Low) and location $37 is called
CSWH (CSW High). This pair of locations holds the address of the subroutine which the Apple
is currently using for single-character output. This address is normally $FDF®, the address of the
COUT subroutine (see page 30). The Monitor’s PRINTER (CTRL P|) command, and the
BASIC command PR#, can change this address to be the address of a subroutine in a PROM on
a peripheral card. Both of these commands put the address $Cr@0 into this pair of locations,
where # is the slot number given in the command. This is the address of the first location in
whatever PROM happens to be on the peripheral card plugged into that slot. The Apple will then
call this subroutine every time it wishes to output one character. This subroutine can use the
instruction sequences given above to find its slot number and use the /0 and RAM scratchpad
locations for its slot. When it is finished, it can either execute an RTS (ReTurn from
Subroutine) instruction, to return to the program or language which is sending the output, or it
can jump to the COUT subroutine at location $FDF®, to display the character on the screen and
then return to the program which is producing output.

Similarly, locations $38 and 39 (decimal 56 and 57), called KSWL and KSWH separately or KSW

83



(Keyboard input SWitch) together, hold the address of the subroutine the Apple is currently
using for single-character input. This address is normally $FDIB, the address of the KEYIN
subroutine. The Monitor’'s KEYBOARD command (CTRL K]) and the BASIC command IN#
both change this address to $Cn#@, again with » the slot number given in the command. The
Apple will call the subroutine at the beginning of the PROM on the peripheral card in this slot
whenever it wishes to get a single character from the input device. The subroutine should place
the input character into the 6502’s accumulator and ReTurn from Subroutine (RTS). The
subroutine should set the high bit of the character before it returns.

The subroutines in a peripheral card’s PROM can change the addresses in the CSW and KSW
switches to point to places in the PROM other than the very beginning. For example, a certain
PROM could begin with a segment of code to determine what slot it is in and do some initializa-
tion, and then jump in to the actual character handling subroutine. As part of its initialization
sequence, it could change KSW or CSW (whichever is applicable) to point directly to the begin-
ning of the character handling subroutine. Then the next time the Apple asks for input or output
from that card, the handling subroutines will skip the already-done initialization sequence and go
right in to the task at hand. This can save time in speed-sensitive situations.

A peripheral card can be used for both input and output if its PROM has seperate subroutines for
the separate functions and changes CSW and KSW accordingly. The initialization sequence in a
peripheral card PROM can determine if it is being called for input or output by looking at the
high parts of the CSW and KSW switches. Whichever switch contains $Cx is currently calling
that card to perform its function. If both switches contain $Cn, then your subroutine should
assume that it is being called for output.

EXPANSION ROM

The 2K memory range from location $C800 to $CFFF is reserved for a 2K ROM or PROM on a
peripheral card, to hold/large programs or driving subroutines. The expansion ROM space also
has the advantage of being absolutely located in the Apple’s memory map, which gives you more
freedom in writing your interface programs.

This PROM space is available to all peripheral slots, and more than one card in your Apple can
have an expansion ROM. However, only one expansion ROM can be active at one time.

Each peripheral card’s expansion ROM should have a flip-flop to enable it. This flip-flop should
be turned ‘‘on’’ by the DEVICE SELECT signal (the one which enables the 256-byte PROM).
This means that the expansion ROM on any card will be partially enabled after you first reference
the card it is on. The other enable to the expansion ROM should be the 7O STROBE line, pin
20 on each peripheral connector. This line becomes active whenever the Apple’s microprocessor
is referencing a location inside the expansion ROM’s domain. When this line becomes active,
and the aforementioned flip-flop has been turned “‘on”’, then the Apple is referencing the expan-
sion ROM on this particular board (see figure 8).

A peripheral card’s 256-byte PROM can gain sole access to the expansion ROM space by referring
to location $CFFF in its initialization subroutine. This location is a special location, and all peri-
pheral cards should recognize it as a signal to turn their flip-flops “‘off”” and disable their expan-
sion ROMs. Of course, this will also disable the expansion ROM on the card which is trying to
grab the ROM space, but the ROM will be enabled again when the microprocessor gets another
instruction from the 256-byte driving PROM. Now the expansion ROM is enabled, and its space
is clear. The driving subroutines can then jump directly into the programs in the ROM, where

84



5
ENABLE 1
1/0 SELECT
LATCH
ROM

ENABLE 2

{ /0 STROBE }
Ap TO Al1p

{ ADDRESS }

Figure 8. Expansion ROM Enable Circuit

they can enjoy the 2K of unobstructed, absolutely located memory space:

P332- 2C FF CF BIT $CFFF
03 35- 4C 00 C8 IMP $C800

It is possible to save circuitry (at the expense of ROM space) on the peripheral card by not fully

decoding the special location address, $CFFF. In fact, if you can afford to lose the last 256 bytes
of your ROM space, the following simple circuit will do just fine:

( A9 )—] \_
TO RESET, ROM ENABLE
FLIP-FLOP
Al

170 STROBE > O

Figure 9. $CFXX Decoding

85



86



CHAPTER 6
HARDWARE CONFIGURATION




THE MICROPROCESSOR

The 6502 Microprocessor
Model: MCS6502/SY6502
Manufactured by: ~ MOS Technology, Inc.
Synertek
Rockwell
Number of instructions: 56
Addressing modes: 13
Accumulators: 1 (A)

Index registers: 2 (X,Y)

Other registers:  Stack pointer (S)
Processor status (P)

Stack: 256 bytes, fixed
Status flags: N (sign)
C (carry)
V (overflow)
Other flags: I (Interrupt disable)
D (Decimal arithmetic)
B (Break)
Interrupts: 2 (IRQ, NMI)
Resets: 1 (RES)
Addressing range:  2'® (64K) locations
Address bus: 16 bits, parallel

Data bus: 8 bits, parallel
Bidirectional

Voltages:  +5 volts
Power dissipation: .25 watt

Clock frequency: 1.023MHz

The microprocessor gets its main timing signals, ®@ and ®1, from the timing circuits described
below. These are complimentary 1.023MHz clock signals. Various manuals, including the MOS

88



Interface

Cassette
Jacks

Peripheral Connectors

Connectors

=
Q

o &
23
» O

000 500 900D 0D 0

Power
Connector

Game 1/0
Connector

USER 1
Jumper

Eurapple

Jumpers

Speaker

Connector

1 ssnwnans

4

ERLLETLLY

i*

Keyboard

Connector

10. The Apple Main Board

Figure

89



Technology Hardware manual, use the designation ®2 for the Apple’s ®@ clock.

The microprocessor uses its address and data buses only during the time period when ®0 is
active. When ®§ is low, the microprocessor is doing internal operations and does not need the
data and address buses.

The microprocessor has a 16-bit address bus and an 8-bit bidirectional data bus. The Address bus
lines are buffered by three 8T97 three-state buffers at board locations H3, H4, and H5. The
address lines are held open only during a DMA cycle, and are active at all other times, The
address on the address bus becomes valid about 300ns after ®1 goes high and remains valid
through all of ®@.

The data bus is buffered through two 8T28 bidirectional three-state buffers at board locations H10
and H11. Data from the microprocessor is put onto the bus about 300ns after ®1 and the
READ/WRITE signal (R/W) both drop to zero. At all other times, the microprocessor is either
listening to or ignoring the data bus.

The RDY, RES, IRQ, and NMI lines to the microprocessor are all held high by 3.3K Ohm resis-
tors to +5v. These lines also appear on the peripheral connectors (see page 105).

The SET OVERFLOW (SO) line to the microprocessor is permanently tied to ground.

SYSTEM TIMING

Table 27: Timing Signal Descriptions

14M: Master Oscillator output, 14.318 MHz. All timing signals are
derived from this signal.

TM: Intermediate timing signal, 7.159 MHz.

COLOR REF:  Color reference frequency, 3.580MHz. Used by the video gen-
eration circuitry.

D0 (D2) : Phase @ system clock, 1.023MHz, compliment to ®1.
DI Phase 1 system clock, 1.023 MHz, compliment to ®0.
Q3: A general-purpose timing signal, twice the frequency of the sys-

tem clocks, but asymmetrical.

All peripheral connectors get the timing signals 7M, &8, @1, and Q3. The timing signals 14M
and COLOR REF are not available on the peripheral connectors.

. 90



™
| |

| |
500 nsec 500 nsec
|

" ' [

n—

Q3

300
nsec

|
|
|
|
6502 Address )( )C \
|

>< See 6502 Hardware
Data from 6502 (read) X ! & manuals for details.

100 nsec

Data to 6502 (write) )OCJ

Figure 11. Timing Signals and Relationships

91



POWER SUPPLY

The Apple Power Supply (U. S. Patent #4,130,862)

Input voltage: 107 VAC to 132 VAC, or
214 VAC to 264 VAC
(switch selectable*)

Supply voltages: +35.0
+11.8
—12.0
—5.2

Power Consumption: 60 watts max. (full load)
79 watts max. (intermittent**)

Full load power output: ~ +5v: 2.5 amp
—5v: 250ma
+12v: 1.5 amp (~ 2.5 amp intermittent**)
—12v: 250ma

Operating temperature:  55c (131° Farenheit)

The Apple Power Supply is a high-voltage ‘‘switching” power supply. While most other power
supplies use a large transformer with many windings to convert the input voltage into many lesser
voltages and then rectify and regulate these lesser voltages, the Apple power supply first converts
the AC line voltage into a DC voltage, and then uses this DC voltage to drive a high-frequency
oscillator. The output of this oscillator is fed into a small transformer with many windings. The
voltages on the secondary windings are then regulated to become the output voltages.

The +5 volt output voltage is compared to a reference voltage, and the difference error is fed
back into the oscillator circuit. When the power supply’s output starts to move out of its toler-
ances, the frequency of the oscillator is altered and the voltages return to their normal levels.

If by chance one of the output voltages of the power supply is short-circuited, a feedback circuit
in the power supply stops the oscillator and cuts all output circuits. The power supply then
pauses for about 2 second and then attempts to restart the oscillations. If the output is still
shorted, it will stop and wait again. It will continue this cycle until the short circuit is removed or
the power is turned off.

If the output connector of the power supply is disconnected from the Apple board, the power
supply will notice this ““no load’’ condition and effectively short-circuit itself. This activates the
protection circuits described above, and cuts all power output. This prevents damage to the
power supply’s internals.

* The voltage selector switch is not present on some Apples.
** The power supply can run 20 minutes with an intermittent load if followed by 10 minutes at normal load
without damage.

92



100041

|
| )
¢
| 64 ._.l 3._.
! 25} kv
! nwy gu [+
! D¢ o
_M LRt oy o4
| D=
1HM/M8 —t s
‘—ul T s L o> w 1
sg oL B ! o 63
T* _ |
1 20
e s —Pt -
ﬂ._I_T_Mu vey muxw L o n_u%« ) Ww “ c¥) CENR LR
»e o * on
“ Ko
e —
o L ) B M ! Zel
502 (RIS v T T+ |
oo ¢ i
—— vy
|
= K o) " nt
ﬁl " vy
w 3
‘—+ owﬁn "
AHM /9¥0

[ S S.H uﬁr cﬁ

N3

CETT
EX)

rﬁ|’ QNNOYO 3YIM Q¥E

ZHO9
¥ ASEl
o1 201

Figure 12. Power Supply Schematic Drawing

93



If one of the output voltages leaves its tolerance range, due to any problem either within or
external to the power supply, it will again shut itself down to prevent damage to the components
on the Apple board. This insures that all voltages will either be correct and in proportion, or they
will be shut off.

When one of the above fault conditions occurs, the internal protection circuits will stop the oscil-
lations which drive the transformer. After a short while, the power supply will perform a restart
cycle, and attempt to oscillate again. If the fault condition has not been removed, the supply will
again shut down. This cycle can continue infinitely without damage to the power supply. Each
time the oscillator shuts down and restarts, its frequency passes through the audible range and
you can hear the power supply squeal and squeak. Thus, when a fault occurs, you will hear a
steady “‘click click click’” emanating from the power supply. This is your warning that something
is wrong with one of the voltage outputs.

Under no circumstances should you apply more than 140 VAC to the input of the transformer
(or more than 280 VAC when the supply’s switch is in the 220V position). Permanent damage to
the supply will result.

You should connect your Apple’s power supply to a properly grounded 3-wire outlet. It is very
important that the Apple be connected to a good earth ground.

CAUTION: There are dangerous high voltages inside the power supply’s case. Much of the
internal circuitry is not isqlated from the power line, and special equipment is needed for service.
DO NOT ATTEMPT TO REPAIR YOUR POWER SUPPLY! Send it to your Apple dealer for
service.

ROM MEMORY

The Apple can support up to six 2K by 8 mask programmed Read-Only Memory ICs. One of
these six ROMs is enabled by a 74LS138 at location F12 on the Apple’s board whenever the
microprocessor’s address bus holds an address between $D@09 and $SFFFF. The eight Data out-
puts of all ROMs are connected to the microprocessor’s data line buffers, and the ROM’s address
lines are connected to the buffers driving the microprocessor’s address lines A@ through A10.

The ROMs have three ‘“‘chip select’” lines to enable them. CS1 and CS3, both active low, are
connected together to the 74LS138 at location F12 which selects the individual ROMs. CS2,
which is active high, is common to all ROMs and is connected to the INH (ROM Inhibit) line on
the peripheral connectors. If a card in any peripheral slot pulls this line low, all ROMs on the
Apple board will be disabled.

The ROMs are similar to type 2316 and 2716 programmable ROMs. However, the chip selects

on most of these PROMs are of a different polarity, and they cannot be plugged directly into the
Apple board.

94



AT | 10 24 | +5v
A6 | 2 23 | A8
AS | 3 22 | A9
Ad | 4 21 | CS3
A3 |5 20 | CS1
A2 | 6 19 | Al10
Al | 7 18 | CS2
AD | 8 17 | D7
DO | 9 16 | D6
D1 | 10 15 | DS
D2 | 11 14 | D4
Gnd | 12 13 | D3

Figure 13. 9316B ROM Pinout.

RAM MEMORY

The Apple uses 4K and 16K dynamic RAMs for its main RAM storage. This RAM memory is
used by both the microprocessor and the video display circuitry. The microprocessor and the
video display interleave their use of RAM: the microprocessor reads from or writes to RAM only
during ®0, and the video display refreshes its screen from RAM memory during ®1.

The three 74LS153s at E11, E12, and E13, the 74LS283 at E14, and half of the 74LS257 at C12
make up the address multiplexer for the RAM memory. They take the addresses generated by
the microprocessor and the video generator and multiplex them onto six RAM address lines. The
other RAM addressing signals, RAS and CAS, and the signal which is address line 6 for 16K
RAMs and CS for 4K RAMs, are generated by the RAM select circuit. This circuit is made up of
two 74LS139s at E2 and F2, half of a 74LS153 at location C1, one and a half 741.S257s at C12
and J1, and the three Memory Configuration blocks at D1, E1, and F1. This circuit routes sig-
nals to each row of RAM, depending upon what type of RAM (4K or 16K) is in that row.

The dynamic RAMs are refreshed automatically during ®1 by the video generator circuitry. Since
the video screen is always displaying at least a 1K range of memory, it needs to cycle through
every location in that 1K range sixty times a second. It so happens that this action automatically
refreshes every bit in all 48K bytes of RAM. This, in conjunction with the interleaving of the
video and microprocessor access cycles, lets the video display, the microprocessor, and the RAM
refresh run at full speed, without interfering with each other.

The data inputs to the RAMs are drawn directly off of the system’s data bus. The data outputs of
the RAMs are latched by two 74LS174s at board locations BS and B8, and are multiplexed with
the seven bits of data from the Apple’s keyboard. These latched RAM outputs are fed directly to
the video generator’s character, color, and dot generators, and also back onto the system data bus
by two 74LS257s at board locations B6 and B7.

95



—5v | 10O 16 | Gnd =5v | 10O 16 | Gnd
Data In | 2 15 | CAS Dataln | 2 15 | CAS
R/W | 3 14 | Data Out R/W | 3 14 | Data Out

RAS | 4 13 | CS RAS | 4 13 | A6

A5 | 5 12 | A2 AS | 5 12 | A2

Ad | 6 11 | Al Ad | 6 11 | Al

A3 7 10 | AD A3 | 7 10 | AD
+12v | &8 9 | +5v +12v | 8 9| +5v

4096 4K RAM 4116 16K RAM
Pinout Pinout

Figure 14. RAM Pinouts

THE VIDEO GENERATOR

There are 192 scan lines on the video screen, grouped in 24 lines of eight scan lines each. Each
scan line displays some or all of the contents of forty bytes of memory.

The video generation circuitry derives its synchronization and timing signals from a chain of
74LS161 counters at board locations D11 through D14. These counters generate fifteen syn-
chronization signals:

HO H1 H2 H3 H4 HS
V@ V1 V2 V3 V4
VA VB VC

The "H" family of signals is the horizontal byte position on the screen, from @0P009 to binary
100111 (decimal 39). The signals V@ through V4 are the vertical line position on the screen,
from binary #0009 to binary 10111 (decimal 23). The VA, VB, and VC signals are the vertical
scan line position within the vertical screen line, from binary 000 to 111 (decimal 7).

These signals are sent to the RAM address multiplexer, which turns them into the address of a
single RAM location, dependent upon the setting of the video display mode soft switches (see
below). The RAM multiplexer then sends this address to the array of RAM memory during ®1.
The latches which hold the RAM data sent by the RAM array reroute it to the video generation
circuit. The 74LS283 at location rearranges the memory addresses so that the memory mapping
on the screen is scrambled.

If the current area on the screen is to be a text character, then the video generator will route the
lower six bits of the data to a type 2513 character generator at location A5. The seven rows in
each character are scanned by the VA, VB, and VC signals, and the output of the character gen-
erator is serialized into a stream of dots by a 74166 at location A3. This bit stream is routed to
an exclusive-OR gate, where it is inverted if the high bit of the data byte is off and either the
sixth bit is low or the 555 timer at location B3 is high. This produces inverse and flashing charac-
ters. The text bit stream is then sent to the video selector/multiplexer (below).

If the Apple’s video screen is in a graphics mode, then the data from RAM is sent to two

74LS194 shift registers at board locations B4 and B9. Here each nybble is turned into a serial
data stream. These two data streams are also sent to the video selector/multiplexer.

96



The 74LS257 multiplexer at board position A8 selects between Color and High-Resolution graph-
ics displays. The serialized Hi-res dot stream is delayed one-half clock cycle by the 74LS74 at
location A1l if the high bit of the byte is set. This produces the alternate color set in High-
Resolution graphics mode.

The video selector/multiplexer mixes the two data streams from the above sources according to
the setting of the video screen soft switches. The 74LS194 at location A10 and the 74LS151 at
A9 select one of the serial bit streams for text, color graphics, or high-resolution graphics
depending upon the screen mode. The final serial output is mixed with the composite synchroni-
zation signal and the color burst signal generated by the video sync circuits, and sent to the video
output connectors.

The video display soft switches, which control the video modes, are decoded as part of the
Apple’s on-board 1/0 functions. Logic gates in board locations B12, B13, B11, A12, and All are
used to control the various video modes.

The color burst signal is created by logic gates at B12, B13, and C13 and is conditioned by RS,
coil L1, C2, and trimmer capacitor C3. This trimmer capacitor can be tuned to vary the tint of
colors produced by the video display. Transistor Q6 and its companion resistor R27 disable the
color burst signal when the Apple is displaying text.

VIDEO OUTPUT JACKS

The video signal generated by the aforementioned circuitry is an NTSC compatible, similar to an
EIA standard, positive composite video signal which can be fed to any standard closed-circuit or
studio video monitor. This signal is available in three places on the Apple board:

RCA Jack. On the back of the Apple board, near the right edge, is a standard RCA phono jack.
The sleeve of this jack is connected to the Apple’s common ground and the tip is connected to
the video output signal through a 200 Ohm potentiometer. This potentiometer can adjust the
voltage on this connector from 0 to 1 volt peak.

Auxiliary Video Connector. On the right side of the Apple board near the back is a Molex
KK100 series connector with four square pins, .25 tall, on .10” centers. This connector supplies
the composite video output and two power supply voltages. This connector is illustrated in figure
15.

Table 28: Auxiliary Video Output Connector Signal Descriptions
Pin Name Description
1 GROUND  System common ground; 0 volts.

2 VIDEO NTSC compatible positive composite video. Black level is
about .75 volt, white level about 2.0 volt, sync tip level is 0
volts. Output level is not adjustable. This is not protected
against short circuits.

3 +12v +12 volt power supply.

4 —5v —5 volt line from power supply.

97



Auxiliary Video Pin. This single metal wire-wrap pin below the Auxiliary Video Output Connec-
tor supplies the same video signal available on that connector. It is meant to be a connection
point for Eurapple PAL/SECAM encoder boards.

>
B

+

[a]
4
! (0]
Elalﬂlﬂ ———Connector
E ——Pin

VIDEO

Figure 15. Auxiliary Video Output Connector and Pin.

BUILT-IN 1/0

The Apple’s built-in I/0 functions are mapped into 128 memory locations beginning at $C@00.
On the Apple board, a 74LS138 at location F13 called the 1/0 selector decodes these 128 special
addresses and enables the various functions.

The 74LS138 is enabled by another 138 at location H12 whenever the Apple’s address bus con-
tains an address between $CO00 and $COFF. The 1/0 selector divides this 256-byte range into
eight sixteen-byte ranges, ignoring the range $C08@ through $COFF. Each output line of the *138
becomes active (low) when its associated 16-byte range is being referenced.

The 0 line from the I/0 selector gates the data from the keyboard connector into the RAM
data multiplexer.

The ‘1" line from the 1/0 selector resets the 74LS74 flip-flop at B10, which is the keyboard flag.

The ““2” line toggles one half of a 74LS74 at location K13. The output of this flip-flop is con-
nected through a resistor network to the tip of the cassette output jack.

The ““3” line toggles the other half of the 74LS74 at K13. The output of this flip-flop is con-
nected through a capacitor and Darlington amplifier circuit to the Apple’s speaker connector on
the right edge of the board under the keyboard.

The ““4” line is connected directly to pin 5 of the Game I/0O connector. This pin is the utility
C040 STROBE .

The 5 line is used to enable the 74LS259 at location F14. This IC contains the soft switches
for the video display and the Game 1/0O connector annunciator outputs. The switches are selected

98



by the address lines 1 through 3 and the setting of each switch is controlled by address line 0.

The 6’ line is used to enable a 74LS251 eight-bit multiplexer at location H14. This multi-
plexer, when enabled, connects one of its eight input lines to the high order bit (bit 7) of the
three-state system data bus. The bottom three address lines control which of the eight inputs the
multiplexer chooses. Four of the mux’s inputs come from a 553 quad timer at location H13.
The inputs to this timer are the game controller pins on the Game I/O connector. Three other
inputs to the multiplexer come from the single-bit (pushbutton) inputs on the Game 1/O connec-
tor. The last multiplexer input comes from a 741 operational amplifier at location K13. The
input to this op amp comes from the cassette input jack.

The 7’ line from the 1/0 selector resets all four timers in the 553 quad timer at location H13.
The four inputs to this timer come from an RC network made up of four 0.022uF capacitors,
four 100 Ohm resistors, and the variable resistors in the game controllers attached to the Game
I/0 connector. The total resistance in each of the four timing circuits determines the timing
characteristics of that circuit.

“USER 1” JUMPER

There is an unlabeled pair of solder pads on the Apple board, to the left of slot @, called the
“User 1°” jumper. This jumper is illustrated in Photo 8. If you connect a wire between these two
pads, then the USER 1 line on each peripheral connectors becomes active. If any peripheral card
pulls this line low, all internal 1/0 decoding is disabled. The I/0 SELECT and the DEVICE
SELECT lines all go high and will remain high while USER 1 is low, regardless of the address on
the address bus.

The USER 1 Jumper

Photo 8. The USER 1 Jumper.

99



THE GAME I/0 CONNECTOR

+5v | 10O 16 | NC
PBO | 2 15 | ANO
PB1 | 3 14 | AN1
PB2 | 4 13 | AN2
C040 STROBE | 5 12 | AN3
GCO | 6 11 | GC3
GC2 | 7 10 | GC1

Gnd | & 9 | NC

Figure 16.

Game I/0 Connector Pinouts

Table 29: Game I/0 Connector Signal Descriptions

Pin: Name: Description:

1 +5v +5 volt power supply. Total current drain on this pin must be
less than 100mA.

2-4 PB@-PB2 Single-bit (Pushbutton) inputs. These are standard 74LS series
TTL inputs.

5 C040 STROBE A general-purpose strobe. This line, normally high, goes low
during ®0 of a read or write cycle to any address from $C@40
through $C@4F. This is a standard 74LS TTL output.

6,7,10,11 GC0-GC3 Game controller inputs. These should each be connected
through a 150K Ohm variable resistor to + 5v.

8 Gnd System electrical ground.

12-15 ANO-AN3 Annunciator outputs. These are standard 74LS series TTL out-
puts and must be buffered if used to drive other than TTL
inputs.

9,16 NC No internal connection.

THE KEYBOARD

The Apple’s built-in keyboard is built around a MMS5740 monolithic keyboard decoder ROM.
The inputs to this ROM, on pins 4 through 12 and 22 through 31, are connected to the matrix of
keyswitches on the keyboard. The outputs of this ROM are buffered by a 7404 and are connected
to the Apple’s Keyboard Connector (see below).

The keyboard decoder rapidly scans through the array of keys on the keyboard, looking for one
which is pressed. This scanning action is controlled by the free-running oscillator made up of
three sections of a 7400 at keyboard location U4. The speed of this oscillation is controlled by
C6, R6, and R7 on the keyboard’s printed-circuit board.

100




081N0D 141Hs 081800
al
»u‘ 7 - 141K
13534 dN ¥Md n@“ LAIHSNA S5 A3
itz u e
L SvIoN LALE ! T041N0D il
lan As+

#[m

A
o

4y
AR
AN
D

\{

AVAD
\avAGE

B
o

/:?/ﬁ
IARVADY
%

i S8,
-y 2x T2 6
hlorre
¥ozz ux_.o.o
mﬁx 29
\V4 o

TR A 85 s
- 51 L

=/

o
IaR

B

E1ES
H
NEE

JARY
A/
(53
a\&]%/

A
<

e

g 33075 1v343y| B3
(52 43%)
1a3y = I3

ASy A+ s 5

|||||||||| 3T8YNI 1nd1N0| 8

ARV DYV
ENIPZAPENI DAY D

R
(B
Q%
CR AR
BN AN
JARYAD
[/

/a]
]
BN

o

4
n
?
)
A

101

ﬂ@\
AP
NEA
i/

2
o
»

%

B

B/
a\2fg/
R
Q%
ENE%

B

AVAAYA

Figure 17. Schematic of the Apple Keyboard

/A
\
]
; 2 o), ] o
i AVAGD /N ®
| 2 € 5 &3
(o= 3041 wive) { g 77} dos
Vi 1nd1n0 o a i " y/ \mﬁzu ?.ny ax«z Rh/:/ B.xo
By = ANPA AN ALY el
91 i 8l 12 22 92
wE— =& = anYanvany
! b i =
(asn) i, DS ORLSNN SN S /m/ 3 /w/ ® /N 3
| _vosean; g 5 €
ASH L)
> —(wey | x x x x x
u\_vouo [SREIGT . Bt 6! ax 2 9! S v £©% X 1%

2 ssa AT TR [oon
£©
B =
(1353y) - 5
= 4
—el "
S+,
:
S A3 m.f m AZI—

HOLYDIONI H3MOd




The key on the keyboard is connected to a 555 timer circuit at board location U3 on the
keyboard. This chip and the capacitor and three resistors around it generate the 10Hz ‘‘REPeaT”’
signal. If the 220K Ohm resistor R3 is replaced with a resistor of a lower value, then the
key will repeat characters at a faster rate.

See Figure 17 for a schematic diagram of the Apple Keyboard.

KEYBOARD CONNECTOR

The data from the Apple’s keyboard goes directly to the RAM data multiplexers and latches, the
two 74LS257s at locations B6 and B7. The STROBE line on the keyboard connector sets a
74LS74 flip-flop at location B10. When the I/0 selector activates its ““@”’ line, the data which is
on the seven inputs on the keyboard connector, and the state of the strobe flip-flop, are multi-
plexed onto the Apple’s data bus.

Table 30: Keyboard Connector Signal Descriptions
Pin: Name: Description:

1 +5v +5 volt power supply. Total current drain on this pin must be
less than 120mA.

2 STROBE Strobe output from keyboard. This line should be given a pulse
at least 10us long each time a key is pressed on the keyboard.
The strobe can be of either polarity.

3 RESET Microprocessor’s RESET line. Normally high, this line should
be pulled low when the button is pressed.

4,916 NC No connection.

5-7, 10-13  Data Seven bit ASCII keyboard data input.

8 Gnd System electrical ground.

15 —12v —12 volt power supply. Keyboard should draw less than
S0mA.

102



+5v | 10 16 | NC
STROBE | 2 15 | —12v
RESET | 3 14 | NC
NC | 4 13 | Datal
Data5 | 5 12 | Data @
Data4 | 6 11 | Data 3
Data6 | 7 10 | Data 2
Gnd | 8 9| NC
Figure 18.

Keyboard Connector Pinouts

CASSETTE INTERFACE JACKS

The two female miniature phone jacks on the back of the Apple II board can connect your Apple
to a normal home cassette tape recorder.

Cassette Input Jack: This jack is designed to be connected to the ‘‘Earphone’’ or “‘Monitor”’
output jacks on most tape recorders. The input voltage should be 1 volt peak-to-peak (nominal).
The input impedance is 12K Ohms.

Cassette Output Jack: This jack is designed to be connected to the ‘‘Microphone” input on
most tape recorders. The output voltage is 25mv into a 100 Ohm impedance load.

103



POWER CONNECTOR

This connector mates with the cable from the Apple Power Supply. This is an AMP #9-35028-1
six-pin male connector.

Table 31: Power Connector Pin Descriptions
Pin: Name: Description:

1,2 Ground Common electrical ground for Apple board.

3 +5v +5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~1.5 amp from this supply.

4 +12v +12.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~400ma from this supply.

5 —12v —12.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~12.5ma from this supply.

6 —5v —5.0 volts from power supply. An Apple with 48K of RAM
and no peripherals draws ~0.0ma from this supply.

(&)}

-12v

+5V E

GND

-5V

j +12V

GND

Ow ©

en O~ o

O

Figure 19. Power Connector

104



SPEAKER

The Apple’s internal speaker is driven by half of a 74LS74 flip-flop through a Darlington amplifier
circuit. The speaker connector is a Molex KK100 series connector, with two square pins, .25”
tall, on .10” centers.

Table 32: Speaker Connector Signal Descriptions
Pin: Name: Description:

1 SPKR  Speaker signal. This line will deliver about .5 watt into an 8
Ohm load.
2 +5v +5 volt power supply.

SPKR

+5V

Figure 20. Speaker Connector

PERIPHERAL CONNECTORS

The eight peripheral connectors along the back edge of the Apple’s board are Winchester
#2HW25C0-111 50-pin PC card edge connectors with pins on .10”" centers. The pinout for these
connectors is given in Figure 21, and the signal descriptions are given on the following pages.

105



0

ano 26 | Faf 25 +sv
DMAIN 27 ] [ 24 DMA OUT
INTIN 28 | (3|23 INTOUT
NMi 29 |] 3| 22 DMA
IRQ 30| (3|27 RDY
RES 37| | 20 /O STROBE

INH 32| (3|19 NC.
-12v 33 (4 (2| 18 R/W
-5V 34 (] (3| 17 A15
NC. 35| | 76 A14

M 36|15 A13

Q3 37| 14 A12

1 38 ||| 13 Alf
USER1 39 ||| 72 At0

%0 40 || 11 A9

DEVICE SELECT 471 | 3| 10 A8

D7 2| @9 A7

D6 43| 2|8 As

D5 44 |C] (3|7 As

D4 45| (3|6 A4

D3 46|C] (|5 A3

D2 47| (3|4 A2

D1 48| 3|3 Al

Do 49| (|2 A0
+12V 50 :L: 1 /O SELECT

N

Figure 21. Peripheral Connector Pinout

106



Table 33: Peripheral Connector Signal Description

Pin:

Name:

Description:

18

20

21

22

23

24

25

26

1/0 SELECT

AD-A15

R/W

SYNC

1/0 STROBE

~

g
>

INT OUT

DMA OUT

+5v

GND

This line, normally high, will become low when
the microprocessor references page $Cn, where
n is the individual slot number. This signal
becomes active during ®@ and will drive 10
LSTTL loads*. This signal is not present on
peripheral connector 0.

The buffered address bus. The address on
these lines becomes valid during ®1 and
remains valid through ®@. These lines will
each drive 5 LSTTL loads*.

Buffered Read/Write signal. This becomes
valid at the same time the address bus does,
and goes high during a read cycle and low dur-
ing a write. This line can drive up to 2 LSTTL
loads*.

On peripheral connector 7 only, this pin is con-
nected to the video timing generator’s SYNC
signal.

This line goes low during ®@ when the address
bus contains an address between $C800 and
$CFFF. This line will drive 4 LSTTL loads*.

The 65@02’s RDY input. Pulling this line low
during ®1 will halt the microprocessor, with the
address bus holding the address of the current
location being fetched.

Pulling this line low disables the 6502’s address
bus and halts the microprocessor. This line is
held high by a 3K Q resistor to +5v.

Daisy-chained interrupt output to lower priority
devices. This pin is usually connected to pin 28
(INT IN).

Daisy-chained DMA output to lower priority
devices. This pin is usually connected to pin 22
(DMA IN).

+5 volt power supply. 500mA current is avail-
able for all peripheral cards.

System electrical ground.

* Loading limits are for each peripheral card.

107




Table 33 (cont’d):

Peripheral Connector Signal Description

Pin:

Name:

Description:

27

26

29

30

31

32

33

34

35

36

37

38

39

DMA IN

INT IN

Z,

P

IRQ

RES

jen

—12v

—5v

COLOR REF

™

Q3

P1

USER 1

Daisy-chained DMA input from higher priority
devices. Usually connected to pin 24 (DMA
ouT).

Daisy-chained interrupt input from higher
priority devices. Usually connected to pin 23
(INT OUT).

Non-Maskable Interrupt. When this line is
pulled low the Apple begins an interrupt cycle
and jumps to the interrupt handling routine at
location $3FB.

Interrupt ReQuest. When this line is pulled
low the Apple begins an interrupt cycle only if
the 6502’s I (Interrupt disable) flag is not set.
If so, the 6502 will jump to the interrupt han-
dling subroutine whose address is stored in
locations $3FE and $3FF.

When this line is pulled low the microprocessor
begins a RESET cycle (see page 36).

When this line is pulled low, all ROMs on the
Apple board are disabled. This line is held high
by a 3K resistor to +5v.

—12 volt power supply. Maxmum current is
200mA for all peripheral boards.

—5 volt power supply. Maximum current is
200mA for all peripheral boards.

On peripheral connector 7 only, this pin is con-
nected to the 3.5MHz COLOR REFerence sig-
nal of the video generator.

TMHz clock. This line will drive 2 LSTTL
loads*.

2MHz asymmetrical clock. This line will drive
2 LSTTL loads*.

Microprocessor’s phase one clock. This line
will drive 2 LSTTL loads*. -

This line, when pulled low, disables all internal
1/0 address decoding**.

* Loading limits are for each peripheral card.

** See page 99.

108




Table 33 (cont’d): Peripheral Connector Signal Description

Description:

Pin: Name:

40 o1}

41 DEVICE
SELECT

42-49  D@-D7

50 +12v

Microprocessor’s phase zero clock. This line
will drive 2 LSTTL loads*.

This line becomes active (low) on each peri-
pheral connector when the address bus is hold-
ing an address between $C@nd and S$COnF,
where n is the slot number plus $8. This line
will drive 10 LSTTL loads*.

Buffered bidirectional data bus. The data on
this line becomes valid 300nS into ®@ on a
write cycle, and should be stable no less than
100ns before the end of ®@ on a read cycle.
Each data line can drive one LSTTL load.

+12 volt power supply. This can supply up to
250mA total for all peripheral cards.

* Loading limits are for each peripheral card.

109




A0 22 4 A

A8 AID AIZ AI4 RW

ROM SELECT

7aLS138-F12

NOTE: UNLESS OTHERWISE SPECIFIED j_ r_.» AS|AT 145 [ALHIAIB) AIS|
V5 V3 VI VC VA HA K2 HG TAS C'REF 9 M O
VA| V2 | VB | VBIHS |H3 W1 | TOPS ms o (paw L
174 74L504-Cl1 S +5 3
==y
TaLsiel i 13 73500
oit =
1 2
L8161
Di2
T4LSI138-HI2
Suder 2]
Il 5, E:
2 26
Tasis3 i % i
24
aLsi6!
o1 N 23)
B 22|
SEE RAM 1 21
ADRS MUX Lefro  zo|
SECTIN
T4LS138-H2
2] 7 [ e 27
5 I - s 5 o
i
+1z 7aLSI161 Tc T LR 3 29
S, 7
bis o M ’ 5 M “
i 12, 3.0 5
A s 174 7458682 2 =
+s 2 38l 12 ! 20|
SOFT S ! 2 14
CAz-11)=+T=qCLR CLK== 13 15
cer cep| f - g _
H Mq el 7S175-81

73586-82

1/0 SELECTS
7 TO PIN |, PERIPHERAL CONNECTOR 7
766 ToPIN | - .
i7Cs 10 PIN Y .
7% TO PIN |
703 70 PIN |
702 TO PIN I
701 TO PIN 1

El

Iw I

Is
J

i
3

-Nus o

b2 o
G
(AL

15

o
3

HI2-15 (TO FI3-5)
DEVICE SELECTS
7

b BEV 7 10 PIN 41 PERIFHERAL CONNECTOR
s BEV & TO PIN 41
P o 5EVS 10 PIN 41
DEVATOPN Gl .

DEV 3 TO PIN 41 .

p=—DEV 1 TOPIN 41 - g
p——= DEV B TO PIN 41 - -

wano~

o -

Al
Al

Figure 22-1. Schematic Diagram of the Apple II

110



€8 49 1) ¥O1I3NNDD vy 3HdIN3d
3 ‘mzmzn i
2 Lzﬂ wz_ 1NG ¥na 2|
e = 53 100 Nif
i 3 e e
i L ot | M,IM B
W als
Gl e P
R Y 4
= | st
A= »
¥3dHNP | ¥3SN £8 e
(Q¥Y08 NO Q3IN¥YHNN) re
% vy
e
IS
= 1353y SI¥ .
er " 1 ¥3sn [
o Y PY :
" o Tl 235 A30
NT.» BIH-8218 t/1 D
3 59 == p
Loy tor = 4
By '
<l _ain-sz18 b 2l o]
% z
Lel>s 52 £ o gt b
5 W srfs 4518 D € o
G TR ) 2 P e S 20
X —=va 3 9vf— z
g . m oL o
o z &'
(e iH-s218 1 s
€@ = —{A2i+ 13s o)
Ll 2t 3 oS s
v z siv
e oin-n218 11 3 o
o 3 L <y
g 2y
% Ty
QIH-8218 /1 a 21y
S € &Y
: 8v
2 I
e sz W o sv
© sv
bl
S+ 3 i £v
2y
e M
ov
24
PI-28SML /1
— —
w_ 22 ~w, kAw 2z |8l ﬂ_w 02 |8l 22 [t mw 22 |51
| __[e3 st 2] __[esowsd eso] __[s5 12 29| €53 153 280 €53 150 250
1 ez
e |
. &
Hec - b-- -- F-- -- P
250 e sa o3 33 o3
S o wew nou wou ox Wb ez
+C d
- <G Y
1 S
v 5
19
21 L
-1 B F--1 == - it -
= = 5 = 3 g Bl = =
SN I G G F ; T

Figure 22-2. Schematic Diagram of the Apple II
111




03
ey
=
o
38

M AC AT A¢ xS w®m
T M| AL AT | AS 7 a8 8 RS

NOTE: UNLESS OTHERWISE SPECIFIED

VS V3 VI VC VA WA e _
v |v2 8 [HS [H: (oPS

7LSIS3- €13

7aLs153
EN

7aLs153]
£

1

74Ls153
HBL(CI3-6) cr

|
| SEE TIMING
1 ecTion
|
!

I
2 1/4 74504 !
3 aala 144 75508-A2
s ! =
) i P s o
g L2
| S i = 5 i
BiI-6) € L3 - I
4 - w2 misze-c2 s
s, I
8, S
/4 1Ls32-Cla 7 8
12, 1 NEWORY SELECT
w7 B
7
va naLses
T
V4 7ALSEEAI VEMORY SELECT-FI %
3 . 1 e

[
I

o 7
9
8
2132 @
lege
7aLs257-1 i
TALSI139-F2

<o Jnls lu

~Jofus

- »..Ta.ﬂ.:»a».») RW
® VB H5 H3 4l [DPS CAS C'REF DB 7M Al A3 AS A7 A3 All AI3AIS

112

Figure 22-3. Schematic Diagram of the Apple II




S ¥Q 20 20 1NONId WYY ¥21/b

L0590 10
5 '
Q0Acy vy v Sys My TQ 884
Sy
p@v I¥ 2v IS)00 S¥I AN
2 2 t 2 2 2 2 2
Ta Ia 19 1 I 10 10 Ic e
= svy
S|
T
212 8 82 9 S0 $2 »J € S LLE]
- vy vy Wy Yy ey Wy Wy vy e oris
T
2l
[
L | S el
| b
i
3
v
gl
. o
13538 a0 50 sa 10 sa s0 +a a g
vy vy Wy vy vy vy vy [ — 13wy
7
—— 1'%
—oey
EIV =S5 T T —_— e ey 213
) ! H N S N 23
%
e Svy
8 ove
g vy
2 L{E] 53 93 3 93 53 vl 2wy
1353 p vy vy vy oy s Wy Wy e
2 - Feouis | L
b N et
¥ -Qv08AIN
0a 0a oa 0a oa
o e v o Cl
5 3 935,
58 . v lo oIl
ls _N. v 1e ss25702 s loily |0 53815 0304 3%
Szpzezaz 2pZ P22 RSy !
3 H s W0 g X0k
sepeeece  apera |' | '| sepeesse i p e b T ir
8 2v) ¢ S 2 ] =
GEE ¢
nfpife s ferferfe|s pilz s fer]aife 89-vLISTEL S 1408 $8-vL1SToL
80
J

aan- .-/ L01saigal 10
azuzri/ g’ hd 20 e

Figure 22-4. Schematic Diagram of the Apple II
113




178 731522 814
s,

4
senz @

B
1/ 7aL502-A12

i mLsee-8i4

a

sonz

coHZ

SOFT 5 (A2-8)]

i
® o » 2
Y auses 174 7aL5@2-B1a HIRES (10 ci2-1) T e 82,11
L - Gl B3,3
5 Al A2 A3 A8 AS AS A7 AB A 1aM
Sz 178 73LS@8-BI1 -
2 D@ LATCHED
o1
88
Qs
2n3Sea ) o
D A1 —— o
5 R27 o GAME 1/O
174 74L502-814 a7 16 1oy 148 13 12¥_ul 1ol S counecton
[NC ANZ AN ANZ AN3 POLS POLT NC i
i
casa
[+5_swo swi_sw2 STs PDL2 PDL2 GND
TF 2] 3] 4] 5§ € 7] s
|||||| +5 L
QUAD TIER
Ss8-HI3 sy i TO 2l
D 16
L8174 o
LS B85 14, T R22
S 1eon Lcs R2S
1/4 74L502-813 i Rz d¢e 22,uF § 12K
Loy =
173 74Ls11-812 5% o7 o 5
1011 1213141516 17] {6t ry fa -s 4, +5
- M4 1 L 2 RIS, 5
5 n AT RIS T
14 1 (Toci2-5) 2051 o = E e 2k M0
174 74Ls11 —812) o bon] Toowr b
uliefsf 7} e 4 i 4 * o
CcS
OInF hd A 114
3 CASSETTE DATA IN IuF
> : 5 B
. wrsas 1
Q4
SOFT 5 4 Ras
CAz-iD 0.WF
2-u0 S8 s 47K
2
e o L T e
415259 -F14 1 L
74LS74-)13
I CASSETTE
OATA OUT
s
< S,
§, T3LSI38-FI3
ON BOARD
170 DECODE
[ 2 -
[T ! _
v3lvi lvclvalnalne €0.05 pg|7m| A (a2 |as |as 1 _
4 V2 VO VB HS H3 CoFs RIF M 1AM Al A3 AS AT o K@ R sTe

Figure 22-5. Schematic Diagram of the Apple II

114



20 50 50 10
a| va) 20| 2a

(8-218) v510
(g-2¥) § 1408:

~W_wnvn

£ wwox:nﬁu 020 pslet
20 80750

Sior
»E-b6ISTHL e il

6158,

«_ﬂ_ -;.THn 2 1

2T91GTvI QL (12181 .
25 1525

3
Al s_T ro st
& vz
s o1 T ot |vt st 575
22
2y [50 w020 1000 $
(250 el S_HH oz »
= _xz%oo 20000 'St
S
(8205 1405 w. 20s (s qq? ov-v6ISTEL -
8v-1525782
S om-visI02 2/
Gi-zv)
s 1L
P}
5q
sq
va
«
2
ia
1%
1nd100 0301 -
vz
o vesz
iy
1504 avam 3w I craw
"
ul
B3 .
2's8
apir o
030IA XAV M
w2 .
55 2o
aH
YO6ENZ

0 50 o2t INAS
el ey
&Y

2+ s- s+

Figure 22-6. Schematic Diagram of the Apple 11
115




Nl
—
—




APPENDIX A
THE 6502 INSTRUCTION SET




6502 MICROPROCESSOR INSTRUCTIONS

ADC

AND
ASL

BCC
BCs
BEQ
BIT

BMI
BNE
BPL
BRK
BVC
BVS
cLc
CLD
cul
CLv
CMmP
CPX
cPY
DEC
DEX
DEY

EOR

INC
INX
INY
JmMP
JSR

Add Memory to Accumulator with
Carry

“AND" Memory with Accumulator
Shift Left One Bit (Memory or
Accumulator)

Branch on Carry Clear

Branch on Carry Set

Branch on Result Zero

Test Bits in Memory with
Accumulator

Branch on Result Minus

Branch on Result not Zero
Branch on Result Plus

Force Break

Branch on Overflow Clear
Branch on Overflow Set

Clear Carry Flag

Clear Decimal Mode

Clear Interrupt Disable Bit
Clear Overflow Flag

Compare Memory and Accumulator
Compare Memory and Index X
Compare Memory and Index Y
Decrement Memory by One
Decrement Index X by One
Decrement Index Y by One
“Exclusive-Or" Memory with
Accumulator

Increment Memory by One
Increment Index X by One
increment Index Y by One
Jump to New Location

Jump to New Location Saving
Return Address

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL

ROR

RTI
RTS

SBC

SEC
SED
SEI

STA
STX
STY
TAX
TAY
TSX
TXA
TXS
TYA

Load Accumulator with Memory
Load Index X with Memory
Load Index Y with Memory
Shift Right one Bit (Memory or
Accumulator)

No Operation

“OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or
Accumulator)

Rotate One Bit Right (Memory or
Accumulator)

Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator
with Borrow

Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory
Store Index X in Memory

Store Index Y in Memory

Transfer Accumulator to Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

118



Sl j==E >+ | LOTOTXD>

THE FOLLOWING NOTATION
APPLIES TO THIS SUMMARY:

Accumulator

Index Registers
Memory

Borrow

Processor Status Register
Stack Pointer

Change

No Change

Add

Logical AND

Subtract

Logical Exclusive Or
Transfer From Stack
Transfer To Stack
Transfer To

Transfer To

Logical OR

Program Counter
Program Counter High
Program Counter Low
Operand

Immediate Addressing Mode

FIGURE 1. ASL-SHIFT LEFT ONE BIT OPERATION
el e L o]

FIGURE 2. ROTATE ONE BIT LEFT (MEMORY
OR ACCUMULATOR)

EnononneE)

FIGURE 3.

et F LI

NOTE 1: BIT — TEST BITS

Bit 6 and 7 are transferred to the status register. If the
result of A A M is zero then Z=1, otherwise Z=0.

119



PROGRAMMING MODEL

~
o

7 0
7 0

X INDEX REGISTER X

15 7 0
PCH [ PCL ]  PRoGRAM counTER
7 0
[0 ] s ] stack poinTER
7 0
n[v]elo[1]z][c PROCESSOR STATUS REGISTER, “P"

E—— CARRY
ZERO
L—————— INTERRUPT DISABLE
DECIMAL MOCE
BREAK COMMAND

OVERFLOW
NEGATIVE

120



INSTRUCTION CODES

Assembly HEX
Name Operation Addressing Language op No. | “P" Status Reg.
Description Mode Form Code | Bytes| NZCIDV

ADC
Add memory to A-M-C —AC | Immediate ADC #Oper 69 2 VVV--V
accumulator with carry Zero Page ADC Oper 65 2

Zero Page X | ADC OperX 75 2

Absolute ADC Oper 6D 3

Absolute.X ADC Oper.X 0 3

Absolute.Y ADC Oper.Y 79 3

(indirect.X) ADC (Oper,X) 61 2

(Indirect).Y ADC  (Oper).Y Al 2
AND
“AND" memory with AAM —A Immediate AND #Oper 29 2 N
accumulator Zero Page AND Oper 25 2

Zero Page.X | AND OperX 35 2

Absolute AND Oper 20 3

Absolute. X AND Oper,X 30 3

Absolute.Y AND Oper.Y 39 3

(Indirect,X) AND (Oper,X) 21 2

(Indirect).Y AND (Oper).Y 31 2
ASL
Shift left one bit (See Figure 1) | Accumulator | ASL A 0A 1 EVAVAVEEe
(Memory or Accumulator) Zero Page ASL Oper 06 2

Zero Page.X ASL Oper,X 16 2

Absolute ASL Oper 0E 3

Absolute. X ASL Oper,X 1E 3
BCC
Branch on carry clear Branch on C=0 | Relative BCC Oper 90 2| ——-
BCS
Branch on carry set Branch on C=1 | Relative BCS Oper B0 2 | ===
BEQ
Branch on result zero Branch on Z=1 | Relative BEQ Oper FO 2 | T=Em==s
BIT
Test bits in memory AAM. M; —N,| Zero Page BIT* Oper 24 2 Mpv/———Mg
with accumulator Mg =V Absolute BIT* Oper 2C 3
BMI
Branch on result minus Branch on N=1 | Relative BMI Oper 30 2| ————
BNE
Branch on result not zero | Branch on Z-0 | Relative BNE Oper DO 2| ————-
BPL }
Branch on result plus| Branch on N=0 | Relative BPL oper 10 2 i
BRK
Force Break Forced Implied BRK* 00 1 S

Interrupt
PC+2 4P
BVC
Branch on overflow clear | Branch on V=0 | Relative BVC Oper 50 2 i
Note 1 =@y & and 7 are lransterred (0 he s1atus register If Ihe rest of AV M 15 Note 2 A BAK command cannot be maskea by setting |

hen 2. 1 ofherwise Z + 0

121



Assembly HEX
Name Operation Addressing Language 0P No. | “P” Status Reg.
Description Mode Form Code | Bytes NZCIDV
BVS
Branch on overflow set Branch on V=1 | Relative BVS Oper 70 2 = e
CLC
Clear carry flag 0—C Implied CLC 18 1 ———0—
CLD
Clear decimal mode 0—D Implied CLD D8 1 —-0-—
CLI
0 —I Implied cLl 58 1 ———0--
CLV
Clear overflow flag 00—V Implied CLV B8 1 ===
cMP
Compare memory and A—M Immediate CMP #0per c9 2 V-
accumulator Zero Page CMP Oper C5 2
Zero Page, X | CMP  Oper,X D5 2
Absolute CMP Oper cD 3
Absolute X CMP  Oper X DD 3
Absolute,Y CMP  Oper,Y D9 3
(Indirect,X) CMP  (OperX) | C1 2
(Indirect),Y CMP  (Oper).Y D1 2
CPX
Compare memory and X—M Immediate CPX #0per E0 2 N
index X Zero Page CPX Oper E4 2
Absolute CPX Oper EC 3
CPY
Compare memory and Y—M Immediate CPY #Oper co 2 vV
index Y Zero Page CPY Oper C4 2
Absolute CPY Oper cC 3
DEC
Decrement memory M—1-=M | Zero Page DEC Oper c6 | 2 /===
by one Zero Page.X DEC Oper,X D6 2
Absolute DEC Oper CE 3
Absolute X DEC Oper,X DE 3
DEX
Decrement index X X—1—=X Implied DEX CA 1 V===
by one
DEY
Decrement index Y Y—1-=-Y Implied DEY 88 1 N

by one

122




Assembly HEX
Name Dperation Addressing Language (3 No. | "P" Status Reg.
Description Mode Form Code (Bytes| NZCIDV
EOR
“Exclusive-0r” memary AVM—-A Immediate EOR #Oper 49 2 VN ==
with accumulator Zero Page EOR Oper 45 2
Zero Page X | EOR Oper,X 55 2
Absolute EOR Oper 4D 3
Absolute.X EOR Oper,X 5D 3
Absolute,Y EOR OperY 59 3
(Indirect.X) EOR (OperX) 41 2
(Indirect).Y EOR (Oper),Y 51 2
INC
Increment memory M+1-+M Zero Page INC Oper E6 2 A
by one Zero Page,X | INC Oper.X F6 2
Absolute INC Oper EE 3
Absolute. X INC Oper.X FE 3
INX
Increment index X by one |X + 1 =X Implied INX E8 1 e
INY
Increment index Y by one | Y + 1 =Y Implied INY c8 1 VV-———
JMP
Jump to new location (PC+1) =PCL | Absolute JMP Oper 4C 3 | =
(PC+2) —PCH | Indirect JMP (Oper) 6C 3
JSR
Jump to new location PC+2+%, Absolute JSR Oper 20 3 | =——
saving return address (PC+1) —PCL
(PC+2) —PCH
LDA
Load accumulator M—-A Immediate LDA #Oper A9 2 VV———
with memory Zero Page LDA Oper A5 2
Zero Page X | LDA OperX BS 2
Absolute LDA Oper AD 3
Absolute,X LDA Oper,X BD 3
Absolute,Y LDA Oper,Y B9 3
(Indirect,X) LDA (Oper.X) Al 2
(Indirect).Y LDA (Oper).Y B1 2
LDX
Load index X M X Immediate LDX #Oper A2 | 2 | W
with memory Zero Page LDX Oper A6 2
Zero Page,Y | LDX OperY B6 2
Absolute LDX Oper AE 3
Absolute,Y LDX Oper,Y BE 3
LDY
Load index Y M —Y Immediate LDY #Oper A | 2 | VW
with memory Zero Page LDY Oper A4 2
Zero Page,X | LDY OperX B4 2
Absolute LDY Oper AC 3
Absolute X LDY Oper.X BC 3

123




Assembly HEX
Name Operation Addressing Language 0P No. | “P” Status Reg.
Description Mode Form Code |Bytes| NZCIDV
LSR
Shift right one bit (See Figure 1) | Accumulator | LSR A 4A 1 0vVvV———
(memory or accumulator) Zero Page LSR Oper 46 2
Zero Page X | LSR Oper.X 56 2
Absolute LSR Oper 4E 3
Absolute X LSR Oper.X 5E 3
NOP
No operation. No Operation Implied NOP EA 1| ————-
ORA
“OR" memory with AVM—=A Immediate ORA #Oper 09 2 V=
accumulator Zero Page ORA Oper 05 2
Zero Page.X | ORA Oper.X 15 2
Absolute _ ORA  Oper 0D 3
Absolute X ORA  Oper.X 1D 3
Absolute,Y ORA  Oper,Y 19 3
(Indirect,X) ORA (Oper,X) 01 2
(Indirect),Y ORA (Oper).Y 1" 2
PHA
Push accumulator Ay Implied PHA 48 1) —
on stack
PHP
Push processor status P Implied PHP 08 1|
on stack
PLA
Pull accumulator At Implied PLA 68 1 V===
from stack
PLP
Pull processor status X} Implied PLP 28 1 | From Stack
from stack
ROL
Rotate one bit left (See Figure 2) | Accumulator | ROL A 2A | 1| WV
(memory or accumulator) Zero Page ROL Oper 26 2
Zero Page X | ROL Oper.X 36 2
Absolute ROL Oper 2E 3
Absolute, X ROL Oper.X 3E 3
ROR
Rotate one bit right (See Figure 3) | Accumulator | ROR A 6A 1| VVV-——
(memory or accumulator) Zero Page ROR Oper 66 2
Zero Page.X | ROR Oper.X 76 2
Absolute ROR Oper 6E 3
Absolute X ROR Oper X 7E 3

124




Assembly HEX
Name Operation Addressing Language 0P No. | “P” Status Reg.
Description Mode Form Code |Bytes| NZCIDYV
RTI
Return from interrupt P{PCH Implied RTI 40 1 From Stack
RTS -
Return from subroutine PC#. PC+1 —PC| Implied RTS 1 i
SBC
Subtract memory from A-M-T—A |Immediate SBC #0per E9 2 VVVT
accumulator with borrow Zero Page SBC Oper E5 2
Zero Page,X | SBC Oper.X F5 2
Absolute SBC Oper ED 3
Absolute. X SBC Oper.X FD 3
Absolute,Y SBC OperY F9 3
(Indirect.X) SBC (Oper.X) E1 2
(Indirect).Y SBC (Oper),Y F1 2
SEC
Set carry flag 1—-C Implied SEC 38 1 ——
SED
Set decimal mode 1—-D Implied SED F8 1 N, 5
SEl
Set interrupt disable 11 Implied SEI 78 1 s
status
STA
Store accumulator A —-M Zero Page STA Oper 85 I
in memory Zero Page.X | STA Oper,X 95 2
Absolute STA Oper 8D 3
Absolute, X STA Oper,X 9D 3
Absolute,Y STA Oper,Y 99 3
(Indirect, X) STA (Oper,X) 81 2
(indirect).Y STA (Oper).Y 91 2
STX
Store index X in memory | X =M Zero Page STX Oper 86 2 | mm——
Zero Page,Y | STX Oper,Y 96 2
Absolute STX Oper 8E 3
STY
Store index Y in memory | Y =M Zero Page STY Oper 84 2|
Zero Page, X | STY Oper,X 94 2
Absolute STY Oper 8C 3
TAX
Transfer accumulator A =X Implied TAX AA 1 N
to index X
TAY
Transfer accumulator A Y Implied TAY A8 1 V===
to index Y
T8X
Transfer stack pointer S «X Implied TSX BA 1 VA==

to index X

125




Assembly HEX
Name Operation Addressing Language 0P No. |“P" Status Reg.

Description Mode Form Code |Bytes| NZCIDV
TXA
Transfer index X X—=A Implied TXA 8A 1 V===
to accumulator
TXS
Transfer index X to X—=5 Implied XS 9A 1| ————
stack pointer
TYA
Transfer index Y Y—=A Implied TYA 98 1 VV————

to accumulator

126




HEX OPERATION CODES

00 — BRK

01 — ORA — (Indirect, X)
02 — NOP

03 — NOP

04 — NOP

05 — ORA — Zero Page
06 — ASL — Zero Page
07 — NOP

08 — PHP

09 — ORA — Immediate
OA — ASL — Accumulator
0B — NOP

0C — NOP

0D — ORA — Absolute
OE — ASL — Absolute
OF — NOP

10 — BPL

11 — ORA — (Indirect), Y
12 — NOP

13 — NOP

14 — NOP

15 — ORA — Zero Page, X
16 — ASL — Zero Page, X
17 — NOP

18 — CLC

19 — ORA — Absolute, Y
1A — NOP

1B — NOP

1C — NOP

1D — ORA — Absolute, X
1E — ASL — Absolute, X

1F — NOP
20 — JSR
21 — AND — (Indirect, X)
22 — NOP
23 — NOP

24 — BIT — Zero Page
25 — AND — Zero Page
26 — ROL — Zero Page
27 — NOP

28 — PLP

29 — AND — Immediate
2A — ROL — Accumulator
2B — NOP

2C — BIT — Absolute
2D — AND — Absolute
2E — ROL — Absolute

2F — NOP

30 — BMI

31 — AND — (Indirect), Y
32 — NOP

33 — NOP

34 — NOP

35 — AND — Zero Page, X
36 — ROL — Zero Page, X
37 — NOP

38 — SEC
39 — AND — Absolute, Y
3A — NOP
3B — NOP
3C — NOP

3D — AND — Absolute, X
3E — ROL — Absolute, X

3F — NOP

40 — RTI

41 — EOR — (Indirect, X)
42 — NOP

43 — NOP

44 — NOP

45 — EOR — Zero Page
46 — LSR — Zero Page
47 — NOP

48 — PHA

49 — EOR — Immediate
4A — LSR — Accumulator
4B — NOP

4C — JMP — Absolute
4D — EOR — Absolute
4E — LSR — Absolute
4F — NOP

50 — BVC
51 — EOR (Indirect), Y
52 — NOP
53 — NOP
54 — NOP

.55 — EOR — Zero Page, X

56 — LSR — Zero Page, X
57 — NOP

58 — CLI

59 — EOR — Absolute, Y

5A — NOP

5B — NOP

5C — NOP

5D — EOR — Absolute, X

127

5E — LSR — Absolute, X

5F — NOP
60 — RTS
61 — ADC — tndirect, X)
62 — NOP
63 — NOP
64 — NOP

65 — ADC — Zero Page
66 — ROR — Zero Page
67 — NOP

68 — PLA

69 — ADC — Immediate
6A — ROR — Accumulator
6B — NOP

6C — JMP — Indirect

6D — ADC — Absolute

6E — ROR — Absolute

6F — NOP
70 — BVS
71 — ADC — (Indirect), Y
72 — NOP
73 — NOP
74 — NOP

75 — ADC — Zero Page. X
76 — ROR — Zero Page, X
77 — NOP

78 — SEI

79 — ADC — Absolute, Y
7A — NOP

7B — NOP

7C — NOP

7D — ADC — Absolute, X NOP
7E — ROR — Absolute, X NOP
7F — NOP

80 — NOP
81 — STA — (Indirect, X)
82 — NOP
83 — NOP

84 —STY — Zero Page
85 — STA — Zero Page
86 — STX — Zero Page
87 — NOP

88 — DEY
89 — NOP
BA — TXA
8B — NOP

8C — STY — Absolute



8D — STA — Absolute
BE — STX — Absolute
8F — NOP

90 — BCC
91 — STA — (Indirect), Y
92 — NOP
93 — NOP

94 — STY — Zero Page. X
95 — STA — Zero Page, X
96 — STX — Zero Page, Y
97 — NOP

98 — TYA
99 — STA — Absolute, Y
9A — TXS
9B — NOP
9C — NOP
9D — STA — Absofute, X
9E — NOP
9F — NOP

A0 — LDY — Immediate
A1 — LDA — (Indirect, X)
A2 — LDX — Immediate
A3 — NOP

A4 — LDY — Zero Page
A5 — LDA — Zero Page
A6 — LDX — Zero Page
A7 — NOP

AB — TAY

A9 — LDA — Immediate
AA — TAX

AB — NOP

AC — LDY — Absolute
AD — Absolute

AE — LDX — Absolute
AF — NOP

B0 — BCS

B1 — LDA — (Indirect), Y
B2 — NOP

B3 — NOP

B4 — LDY — Zero Page. X
B5 — LDA — Zero Page. X
B6 — LDX — Zero Page. Y
B7 — NOP

B8 — CLV
B9 — LDA — Absolute, Y
BA — TSX
BB — NOP

BC —LDY — Absolute,
BD — LDA — Absolute, X
BE — LDX — Absolute, Y
BF — NOP

C0 — CPY — Immediate
C1 — CMP — (indirect, X)
C2 — NOP

C3 — NOP

C4 — CPY — Zero Page
C5 — CMP — Zero Page
Cé — DEC — Zero Page
C7 — NOP

x

C8 — INY

C9 — CMP — Immediate
CA —DEX

CB —NOP

CC —CPY — Absolute
CD —CMP — Absolute
CE — DEC — Absolute

CF — NOP
DO — BNE
D1 — CMP — (Indirect), Y
D2 — NOP
D3 — NOP
D4 — NOP

DS — CMP — Zero Page, X
D6 — DEC — Zero Page, X
D7 — NOP

D8 — CLD

D9 — CMP — Absolute, Y
DA —NOP

128

OB — NOP

DC —NOP

DD —CMP — Absolute. X
DE — DEC — Absolute, X
DF — NOP

EO — CPX — Immediate
E1 — SBC — (Indirect, X
E2 — NOP

E3 — NOP

E4 — CPX — Zero Page
E5 — SBC — Zero Page
E6 — INC — Zero Page

E9 — SBC — Immediate

EB — NOP
EC — CPX -— Absolute
ED — SBC — Absolute
EE — INC — Absolute
EF — NOP

FO — BEQ
F1 — SBC — (Indirect), Y
F2 — NOP
F3 — NOP
F4 — NOP

F5 — SBC — Zero Page, X
F6 — INC — Zero Page, X
F7 — NOP

F8 — SED

F3 — SBC — Absolute, Y
FA — NOP

FB — NOP

FC — NOP

FD — SBC — Absolute, X
FE — INC — Absolute, X
FF — NOP



APPENDIX B
SPECIAL LOCATIONS




Table 1: Keyboard Special Locations

Location:

Hex Decimal Description:
$CO00 49152 -16384 Keyboard Data
$CO10 49168 -16368 Clear Keyboard Strobe

Table 4: Video Display Memory Ranges

Scieen Page Begins at: ‘ Ends at: .
Hex Decimal Hex Decimal
Text/Lo-Res  Primary $400 1024 $7FF 2047
Secondary  $800 2048 $BFF 3071
Hi-Res Primary $2000 8192 $3FFF 16383
Secondary  $4000 16384 $SFFF 24575
Table 5: Screen Soft Switches
Location: . Description:
Hex Decimal
$CO50 49232 -16304 Display a GRAPHICS mode.
$C@51 49233 -16303 Display TEXT mode.
$C0P52 49234 -16302 Display all TEXT or GRAPHICS.
$C053 49235 -16301 Mix TEXT and a GRAPHICS mode.
$C054 49236 -16300 Display the Primary page (Page 1).
$CO55 49237 -16299 Display the Secondary page (Page 2).
$CO56 49238 -16298 Display LO-RES GRAPHICS mode.
$CO57 49239 -16297 Display HI-RES GRAPHICS mode.
Table 9: Annunciator Special Locations
Address:
fon.  Sihte Decimal Hex
0 off 49240  -16296  $CO58
on 49241  -16295 $C@59
1 off 49242  -16294 $COSA
on 49243  -16293 $COSB
2 off 49244  -16292 $C@5C
on 49245 -16291 $CO5D
3 off 49246  -16290 $COSE
on 49247  -16289 $COSF

130




Table 10: Input/Output Special Locations

; Address: ) .
Function Desiial B Read/Write
Speaker 49200 -16336 $C030 R

Cassette Out 49184
Cassette In 49256

-16352  $C020 R
-16288  $C060 R

Annunciators | 49240
through

49247

-16296 $C058 R/W
through  through
-16289 $COSF

Flag inputs 49249

49250
49251

-16287 $Co61
-16286  $C062
-16285 $C063

Analog Inputs | 49252

49253
49254
49255

| =

-16284  $C064
-16283 $C065
-16282  $C066
-16281 $C067

Analog Clear | 49264

-16272  $C070 R/W

Utility Strobe | 49216

-16320  $CP40 R

Table 11: Text Window Special Locations

Function Locgtion: Min'imum/Normal/Maximum Value
Decimal Hex | Decimal Hex
Left Edge 32 $20 | 0/0/39 $0/$0/817
Width 33 $21 | 0/40/40  $0/$28/$28
Top Edge 34 $22 | 0/0/24 $0/%0/818
Bottom Edge 35 $23 | 0/24/24  $0/%18/818

Table 12: Normal/Inverse Control Values

Value:
Decimal Hex i
255 $FF | COUT will display characters in Normal mode.
63 $3F | COUT will display characters in Inverse mode.
127 $7F | COUT will display letters in Flashing mode, all
other characters in-Inverse-mode.
Table 13: Autostart ROM Special Locations
Location:

Decimal . Hex

Contents:

1010 $3F2 Soft Entry Vector. These two locations contain
1011 $3F3 the address of the reentry point for whatever

language is in use. Normally contains $SE@@3.
1012 $3F4 Power-Up Byte. Normally contains $45.

64367 $FB6F

(-1169)

This is the beginning of a machine language
subroutine which sets up the power-up location.

131



Table 14: Page Three Monitor Locations

Address: Use:

Decimal Hex Monitor ROM  Autostart ROM
1008 $3F0 Holds the address
1009 $3F1 of the subroutine

which handles
None. .
machine language
“BRK”  requests
(normaly $FAS9).
%gi? 22’]}3 None. Soft Entry Vector.
1012 $3F4 | None. Power-up byte.

1013 $3F5 | Holds a ‘‘JuMP” instruction to the
1014 $3F6 | subroutine which handles Applesoft II
1015 $3F7 | “&” commands. Normaly $4C $58
$FF.

1016 $3F8 | Holds a ‘‘JuMP” instruction to the
1017 $3F9 | subroutine which handles ‘‘User”
1018 $3FA | (CTRL Y]) commands.

1019 $3FB | Holds a “‘JuMP” instruction to the
1020 $3FC |subroutine which handles Non-
1021 $3FD | Maskable Interrupts.

1022 $3FE | Holds the address of the subroutine
1023 $3FF | which handles Interrupt ReQuests.

Table 22: Built-In I/0 Locations

80 $1 82 33 %4 35 $6 $7 38 $9 $A $B $C 3D SE SF

$CO00 | Keyboard Data Input

$C010 | Clear Keyboard Strobe

$C020 | Cassette Output Toggle

$C030 | Speaker Toggle

$C040 | Utility Strobe

$CO50 | er | tx | nomix | mix | pri | sec | lores | hires anf anl an2 an3

$CO60 | cin pbl pb2 pb3 | ged | gel gc2 ge3 repeat $CO60-$CO67

$C@70 | Game Controller Strobe

Key to abbreviations:

gr Set GRAPHICS mode tx  Set TEXT mode
nomix Set all text or graphics mix  Mix text and graphics
pri  Display primary page sec  Display secondary page
lores  Display Low-Res Graphics  hires  Display Hi-Res Graphics
an  Annunciator outputs pb  Pushbutton inputs
gc  Game Controller inputs cin  Cassette Input

132




Table 23: Peripheral Card I/0 Locations

$C080
$C090
3CO0AD
$CoBO
$CoCo
$CODO
$COED
$COFQ

$0 81

$2 $3 %4 $5

$6 $7 §8

$9 $SA $B $C $D SE §F

Input/Output for slot number

B e WO, s SR OU I O I

Table 24: Peripheral Card PROM Locations

$00 $10 $20 $30 $40 $50 $60 370 $80 $90 $A0 $BO $COH $DP SEO SFO

$C100 1

$C200 2

$C300 3

$C400 PROM space for slot number 4

$C500 5

$C600 6

$C700 7

Table 25: 1/0 Location Base Addresses
Base Slot
Address 0 1 2 3 4 5 6 7
$C080 $C0O80 $C090 SCOAD $CoBO $COCH $CODO $COE®  $COF0
$Co81 $CO81 $C091 $COA1 $COB1 $COC1 $COD1 $COE1 $COF1
$C082 $C082 $C092 $C0OA2 $C0oB2 $CoC2 $COD2 $COE2 $COF2
$C083 $C083 $C093 $COA3 $COB3 $CoC3 $COD3 $COE3 $COF3
$C084 $C0O84 $C094 $CoA4 $CoB4 $Coc4 $COD4 $COE4 $COF4
$CO85 $CO8S $C095 $COAS $COBS $Cocs $CODS $COES $COF5
$C086 $CO86 $C096 $C0OAG6 $COB6 $Coce $COD6 $COE6 $COF6
$C087 $C0O87 $C097 $SCOAT $COB7 $coc7 $COD7 $COE7 $COF7
$C088 $CO88 $C098 $COA8 $COB8 $CoC8 $COD8 $COE8 $COF8
$C089 $CO89 $C099 $COA9 $COB9 $COC9 $CODY9 $COE9 $COF9
$CO8A $CASA  $CO9A SCHAAA $CPBA $COCA SCODA SCOEA  $COFA
$C0O8B $CP8B  $COIB  $CHAB $CPBB $COCB $CODB S$CPEB  $COFB
$cescC $CA8C  $CPIC SCHAC S$CPBC $COCC $CODC $COEC  $COFC
$C08D $CPASD  $CPID $SCPAD $CUBD $COCD $CODD $COED $COFD
$CO8E $CASE  $CP9E SCOAE $COBE S$COCE $CODE S$COEE  $COFE
$CO8F $CASF  $CO9F SCOAF $COBF S$COCF $CODF $COEF  $COFF
1/0 Locations

133




Table 26: 1/0 Scratchpad RAM Addresses

Base Slot Number

Address | 1 2 3 4 5 6 7

$0478 $0479  $047A  $047B  $047C  $047D  $047E  $@47F
304F8 $04F9  $O4FA $04FB  $P4FC  $04FD  $O4FE  $@4FF
$0578 $0579  $057A  $657B  $657C  $057D  $OSTE  $OSTF
$05F8 $05F9 $0SFA  $OSFB  $O5FC  $0SFD  $OSFE  $OSFF
$0678 $0679 $067A  $067B  $067C  $067D  $B6TE  $G6TF
$06F8 $06F9 $O06FA $O6FB $06FC $06FD $O6FE  $O6FF
$0778 $0779  $077A  $077B  $077C  $077D  $077E  $@77F
$07F8 $07F9 $OTFA $OTFB  $O0TFC $07FD $O7FE  $@7FF

134




APPENDIX C
ROM LISTINGS




AUTOSTART ROM LISTING

0000:
0000.
0000:
0600:
0000:
0000:
000¢C:
0000:
0000:
0000:
006G:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
F800:
F200:
FB0OO:
FB00:
FB00:
FBGO:
F800:
FB0O0:
FBOO:
FB800:
FB00:
FBO0O:
F800:
F800:
FBOO:
FB00:
FB800:
FB00:
F800:
FB0GC:
FB0O:
FB0O0:
FB0O:
F800:
FBOO:
FBOO:
FB00:
FB0O:
FB800:
FB00:
FB0O0:
FB00:
FB800:
FB80G:
F800:
FB00:
F800:
FB00:
FB800:
FB800:
F800:
F800:
F800:
FB0O:
FBOG:
F800:
F800:
FBOO:
FE00:

RURX RN S I S AN N )

3
# APPLE I1I
# MONITOR II
#*
# COPYRIGHT 1978 BY
# APPLE COMPUTER, INC
*
# ALL RIGHTS RESERVED
*
* STEVE WOZNIAK
#*
33 * 3* 306 3 333
3*
# MODIFIED NOV 1978
#* BY JOHN &
*
R 34t 3¢ 3* R
ORG $FB00
0BJ %2000
Loco EQU %00
LOC1 EGU %01
WNDLFT EQU $20
WNDWDTH EQU $21
WNDTOP EQU $22
WNDBTM EQU $23
CH EQU %24
cv EQU %25
GBASL EQU $26
GBASH EQU 27
BASL EQU $28
BASH EQU %29
BAS2L EQU 24
BAS2H EQU 2B
H2 EQU $2C
LMNEM EQU $2C
va EQU $2D
RMNEM EQU $2D
MASK EQU $2E
CHKSUM EQU $2E
FORMAT EQU $2E
LASTIN EQU $2F
LENGTH EQU $2F
SIGN EQU $2F
COLOR EQU 430
MODE EQU $31
INVFLG EQU $32
PROMPT EQU $33
YSAV EQU 34
YSAV1 EQU 35
CSWL EQU $364
CSWH EQU %37
KSWL EQU 38
KSWH EQU 39
PCL EQU 34
PCH EQU $3B
AlL EQU $3C
AlH EQU 3D
A2L EQU $3E
A2H EQU &3F
ASL EQU %40
A3H EQU $41
A4L EQU %42
A4H EQU %43
ASL EQU s44
ASH EQU %45

136



F800:
FB0O:
F800:
FB00:
F800:
FB00:
F800:
FB8CC:
FB00:
FB0G:
FB00:
F800:
F800:
Fao0:
F800:
Fg800:
F800:
FB800:
FB800:
FB800:
FB00:
FBOO:
FB00:
FB00:
FB00:
FB00:
F800:
FB00:
FB00:
FB00:
FB800:
FBOO:
F800:
FBOO:
FB00:
FB0O:
FB0O:
FBO0O:
FB800:
FB800:
FB0O0:
F800:
FB00:
FB00:
F800:
FBOO:
FB00:
FB01:
FBo2:
FB0S:
F8064:
FB808:
FBOA:
F80C:
FBOE:
FB810:
FB12:
FB14:
FB1é:
FB818:
FB19:
FBiC:
FBI1E:
F820:
F821:
F824:
FB26&:
F828:
FB29:
Fga2c:
FB2D:
FB2F:
FE31:

an
08
20
28
A?
70
&9
85
Bi
45
25
51
91
&0

=
2

c4
BO
o1=]
20
?0
&2
48
20
68
cS
90
60

47

OoF
02
£0
2E
26
30
2E
26
26
00
2C

11

OE

Fé&

00

2D

FS

F8

F8

ACC
XREG
YREG
STATUS
SPNT
RNDL
RNDH
PICK
IN
BRKV
SOFTEV
PWREDUP
AMPERY
USRADR
NMI
IRQLOC
LINEL
MSLOT
I0ADR
KBD
KBDSTRB
TAPEQUT
SPKR
TXTCLR
TXTSET
MIXCLR
MIXSET
LOWSCR
HISCR
LORES
HIRES
SETANO
CLRANO
SETAN1
CLRAN1
SETANZ2
CLRAN2
SETAN3
CLRAN3
TAPEIN
PADDLO
PTRIG
CLRROM
BASIC
BASIC2

PLOT

2 RTMASK
? PLOTL

HLINE
HLINEL

VLINEZ
VLINE

RTE1

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EGU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EGQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

$45
46
$47
$48
$49
$4E
$4F
$95
$0200
$3F0
$3F2
$3F4
$3F5
$03F8
$03FB
$3FE
$400
$0778
$C000
$C000
$C010
$C020
£C030
%C050
$C051
$C052
$C053
$C054
$C055
$C056
$C057
$C058
$C059
$C05A
$CO5B
$C05C
$COSD
$COSE
$COSF
$C060
$C064
$C070
$CFFF
$E000
$E003

PAGE

LSR
PHP
JSR
PLP
LDA
BCC
ADC
sTA
LDA
EOR
AND
EOR
STA
RTS
JSR
cPY
BCS
INY
JSR
BCC
ADC
PHA
JSR
PLA
CMP
BCC
RTS

A

GBASCA

#50F
RTMASK
#$EO
MASK

LC

NOTE OVERLAP WITH ASH!

NEW VECTOR FOR BRK

VECTOR FOR WARM START

THIS MUST = EOR #%A5 OF SOFTEV+1
APPLESOFT % EXIT VECTOR

(GBASL). Y

COLOR
MASK

(GBASL), Y
(GBASL) ., Y

PLOT
H2
RTS1

PLOT1
HLINE1
#$01
PLOT

va
VLINEZ

137



F832:
F834:
F836:
FB838:
F834:
F83cC:
F83E:
FB840C:
FB843:
FB44:
FB846:
F847:
FB847:
F848:
FB4%:
F84E:
F84D:
FB84F .
F850:
Fesz:
F854:
FE56:
FB85&:
FE59:
FB85A:
Fesc:
F85E:
FB5F:
F8&1:
FB&2:
FB64:
FBa&sb:
F868:
FB69:
F86a-
FB&B:
F86&C:
FB6E:
F870:
FB871:
FB872:
FB873:
F876:
F878:
F87%:
FB87B:
F87cC:
F87D:
FB7E:
FB7F:
F881:
F8B2:
FeBa:
FB884:
FB8&:
F88%:
F88cC:
FBBE:
FBar:
F8%90:
FB822:
F893:
FB8%95:
F897:
FB?9:
F8%9B:
FB9C:
F8%D:
FBAO:
F8A3:
FBAS:
F8A7:
FBA%:

A0
DO
AD
B4
AO
Ag
85
20
8s
10
60

48
44
29
(e
85
68
29
?0
=4
35
OA
0A
05
e5
60
AS
18
&S
29
85

[oT2)
oA
oA
05
Bs
60
44
o&
20
B
2
50
4a
446
4a
44
29
&0

Ad
A4
20
20
Al
AB
4A
20
oA
BO
ce
FO
2%
4A
AA
BD
20
DO
AO
A9
AA

oF
oz
2D

27

00
30
28

F&

30

47
26

04

OF

3A
3B
9é
4L
34

09

10

-
2

oc
87

62
79
04
80
00

F8

FD
Fo

Fo
F8

142
14323
144
145
146
147
148
142
150
151
122
is5&
154
158
156
157
158
1529
160
161

162
163
164
165
166
187
168
169
170
174

172
172
174
175
176
177
17¢e
179
180
181

ig2
185
184
185
1846
187
188
189
190
193
192
1.93
194
195
194
197
192
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

CLRSCR

CLRTOP
CLRSC2

LRSC3

GBASCALC PHA

GBCALC

SETCOL

SCRN

SCRN2

RTMSKZ

INSDE1

INSDE2

IEVEN

ERR

GETFMT

LDY
BNE
LDY
STY
LDy
LDA
STA
JSR
DEY
BPL
RTS
PAG

LSR
AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
SThA
RTS
LDA
cLc
ADC
AND
STA
ASL
ASL
ASL
ASL
ORA
STA
RTS
LSR
PHP
JSR
LDA
PLP
BCC
LSR
LSR
LSR
LSR
AND
RTS

PAGE

LDX
LDy
JSR
JER
LDA
TAY
LSR
ECC
ROR
BCS
CMP
BEG
AND
LSR
TAX
LDA
JER
BNE
LDY
LDA
TAX

#$2F
CLRSC2
#527
va
#£27
#$00
COLOR
VLINE

CLRSC3

A
#4503
#5504
GBASH

#4518
GECALC
#87F
GBASL
A

A
GBASL
GBASL

COLOR

#$03
#H0F
COLOR

GBASCALC
(GBASL), Y

RTMSKZ
A

A

A

A

#£0OF

PCL
PCH
PRYX2
PRBLNK
(PCL, X

A
IEVEN
A

ERR
H#BA2
ERR
#$87
A

FMT1, X
SCRNZ2
GETFMT
#%80
#$00

138



F8AA:
FBAD:
FBAF:
FBB1:
F8B3:
FB8B4:
FBBé&:
FBB7:
FB8B8:
FBBA:
F8BC:
F8BE:
F8BF:
FB8C1:
FBC2:
FBC3:
FB8C5:
FB8C&:
FB8C8:
FBCY:
FBCA:
FBCC:
FBCD:
F8DQ:
FBDG:
FBD3:
FBD4:
FBDL6:
FBDY:
F8DE:
FBDE:
FBEO:
FBEL:
FBE3:
FBES:
FBE7:
FBE?:
FBEA:
FBEE:
F8EE:
FBFO:
FBF3:
FBF5:
FBF7:
FBF%:
F8FB:
FBFLD:
FBFE:
FBFF:
FoO01:
F2GC3:
FR06:
F?07:
F?09:
F20C:
FSOE:
F?10:
Fo12:
FP14:
F16:
F218:
F?1B:
FRLE:
F?21:
F223:
Fo26:
FR27:
F929:
F92A:
F92B:
F92D:
F230:
F232:

BD
s
29
85
78
25
Ah
98
A0
EO
FO
44
90
4
44
09
88
DO
cs
8e
DO
60
FF

5
=

48
B1
20
Az
20
ca
c8
50
Az
co
90
68
A8
B9
85
BY
85
N
A0
06
26
26
8s
DO
69
20
cA
DO
20
As
Az
EO
FO
o0&
90
ED
20
BD
FO
20
ca
DO
60
88
30
20
A5
c9

Ab
2E
03
a2F

8F

03
8A
OB

o8

3a
DA
01
4n
oF

Fi
03
04

oy
=

co
2C
00
2D
00
[o}5]
2D

ac

F8
BF
ED

EC
48
2F
06
03
ic
2E
OE
B3
ED
B9
03
ED

E7

E7
DA
2E

EB

FQ

FF

F8

FD

Fo

Fo

FéA

FD

Fo

F?
FD
F9

FD

FD

215
218
217
218
219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2495
246
247
248
249
250
251
252
253
254
289
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
272
280
281
282
283
284
285
286
287

MNNDX 1

MNNDX2

MNNDX3

INSTOSP

PRNTOP

PRNTBL

NXTCOL

PRMNZ2

PRADR1

PRADR2Z

PRADR3

PRADR4

PRADRS

LDA
STA
AND
STA
TYA
AND
TAX
TYA
LDy
CPX
BEG
LSR
BCC
LSR
LSR
ORA
DEY
BNE
INY
DEY
BNE
RTS
DFB
PAGE
JER
PHA
LDA
JER
LDX
JER
CPY
INY
BCC
LDX
CPY
BCC
PLA
TAY
LDA
STA
LDA
STA
LDA
LDY
ASL
ROL
ROL
DEY
BNE
ADC
JER
DEX
BNE
JER
LDY
LDX
CPX
BEQ
ASL
BECC
LDA
JER
LDA
BEG
JSR
DEX
BNE
RTS
DEY
BMI
JER
LDA
CMP

FMT2, X
FORMAT
#$03

LENGTH

#$8F

#$03
#$8A
MNNDX3
A
MNNDX3
A

A

#$20

MNNDX2

MNNDX 1
$FF, $FF, $FF
INSDS1

(PCL)Y, Y
PRBYTE
#$01
PRBL2
LENGTH

PRNTOP
#$03
#$04
PRNTBL

MNEML, Y
LMNEM
MNEMR, Y
RMNEM
#$00
#$05
RMNEM
LMNEM

A

PRMN2
#EBF
CouT

NXTCOL
PRBLNK
LENGTH
#%06

#%$03
PRADRS
FORMAT
PRADR3
CHAR1-1, X
couT
CHAR2-1, X
PRADR3
couT

PRADR1
PRADR2
PRBYTE

FORMAT
#$EB

139



F934:
FQ36:
Fe38:
F938:
FQ3E:
F93C:
F?3D:
F93F:
F940:
F41:
Fo44:
FR45:
Fo48:
F4A:
Fo4C:
FR4F:
F50-
Fesa:
FQS53:
F2?54:
Fe56:
F258&:
F?5%9:
F95B:
F?5C:
FeSE:
F?60:
FR&1:
Fos2:
FR63:
Fo64:
Fo65:
Fobb:
Fo67:
Fo68:
Fo6e9:
Fo6A:
F96B:
FR6&C:
Fo6&D:
FR&E:
FQG&F:
FQ70:
Fo71:
Fe72:
F973:
F974:
FQ75:
F976:
F977:
F978:
F979:
F974A:
F97B:
F97C:
Fe7D:
FQ7E:
Fo7F:
F280:
Fo81:
Fe82:
F983:
Fe84:
F985:
F986:
Fo87:
Fe88:
F98%9:
F98A:
F98B:
F?8C:
F98D:
F9BE:

B1
20

20
AA
EE
DO
ce
78
20
8A
4C
A2
AF
20
caA
DO
&0
38
AD
A4
AL
10
eg
65
?0
c8
&0
04
20
54
30
oD
80
04
0
03
22
54

]
&

oD
80
04
F0
04
20
54

2
&3

oD
80
04
2?0
04
20
54
3B
o))
80
04
90
00

22

44
33
oD
c8
44
00
11
22
44
33
oD

3A
F2

26

o1

DA

DA

.
3

A0
ED
F8
2F
3B
o1

3A
01

Fo

FD

FD

FD

288
289
290
291
292
292
294
295
296
297
298
299
300
201
302
203
304
205
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

323

324
325
326
327
328
329
330
331
332
332
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
35¢
351
352
353
254
355
356
357
358
359
3560

RELADR

PRNTYX
PRNTAX
PRNTX

PRBLNK
PRBLZ2
PRBL3

PCADJ
PCADJ2
PCADJ3

PCADJU4

RTS2
FMT1

LDA
BCC
PAGE
JSR
TAX
INX
ENE
INY
TYA
JER
TXA
JMP
LDX
LDA
JER
DEX
BNE
RTS
SEC
LDA
LDY
TAX
BPL
DEY
ADC
BCC
INY
RTS
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFBE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFDB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB

(PCL), Y
PRADR4

PCADJ3

PRNTYX

PRBYTE

PRBYTE
#%$03
#%A0
couT

PRBL2

LENGTH
PCH

PCADJ4

PCL
RTS2

$04
%20
$54
$30
$0D
$80
$04
$90
$03
$22
$54
$33
$0D
$80
$04
%90
$04
%20
$54
$33
$0D
$80
$04
$90
$04
$20
$54
$3B
$0D
$80
$04
$90
$00
$22
$44
$33
$0D
$C8
$44
$00
$11
$22
$44
$33
$0D

140



F98F:
F990:
F991:
Fee2:
F993:
Fo94:
F295:
F296&:
FR97:
Fe98:
F299:
FoA:
F99B:
Fo2C:
F99D:
F?9E:
F2%F;
F?A0:
FoAl:
Foa2:
F9A3:
FoAa4:
F9AS:
FRAG:
FRA7:
FIAB:
FoA9:
FPAA:
F9AB:
F?AC:
F?AD:
FRAE:
FoAF:
F9PBO:
F9B1:
F9B2:
F9B3:
F?B4.
F9B5:
F?Bé&:
F9B7:
F?BE:
F9BY:
F2BA:
F9BB:
F9BC:
F9BD:
F9BE:
F9BF:
FRCO:
FQC1:
Feca:
FRC2:
F9C4:
FeC5:
FoCé6:
FQC7:
FoC8:
Foce:
FoCaA:
FQCB:
Fecce:
F9CD:
FoCE:
FQCF:
F9DO:
F9D1;
F9D2:
F9D23:
F9D4:
FDS:
F9Dé6:
FoD7:

cs
44
AT
o1
22
a4
aa

80
04
90
o1
22
44
33
oD
80
o4
90
26
31
87
96
00
21
et
82
00
00
59
4D
91
92
86
4p
85
9D
AC
a9
AC
a3
AB
A4
D9
00
DS
a4
AL
00
1c
84
i€

=)
e

SD
=36
1B
Al
@D
84A
ip
23
9D
8B
iD
Al
00
29
19
AE
&9
AB
19
23

361
362
363
364
365
366
367
368
369
370
arz1
372
373
374
375
aze
577
a7zs
379
380
381
a2
383
384
3gs
384
387
288
389
390
391
292
393
394
395
296
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

23
424
425
426
427
428
429
430
431
432
433

FMT2

CHAR1

CHAR2

MNEML

DFB
DFE
DFB
DFB
DFE
DFB
DFB
DFRB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFR
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFBE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFR
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

$C8
$44
$49
$01
$22
$44
$33
$0D
$80
$04
$90
$01
$22
$44
$33
0D
$80
$04
$90
$26
$31
$87
$94
$00
$21
$81
$82
$00
$00
$59
$4D
$91
$92
$86
$4A
$85
$9D
$AC
$A9
$AC
$A3
$AB
$a4
$D9
$00
$DB
$A4
$44

$00
$1C
$B8A
$1C
$23
$5D
$8B
$1B
$A1
$9D
$BA
$1D
$23
$9D
$8B
$1D
%A1
$00
$29
$19
$AE
69
$A8
$19
$23

141



FeD8:
F9D9:
FDA:
F9DB:
FeDC:
F9DD:
F9DE:
F9DF:
F?EO:
FEL:
FRE2:
FPE3:
FQE4:
F9ES:
FPEG:
FRE7:
FRES:
FRE®?:
FQEA:
FQEB:
F9EC:
FED:
FQEE:
FQEF:
F9FO:
FoF1:
FoF2:
FoF3:
F9F4:
F9F5:
F9F6:
FoF7:
F9F8:
FoF9:
F9Fa:
FoFB:
FoFC:
FQFD:
FOFE:
FOFF:
FAQO:
FAO1:
FAQ2:
FAO3:
FAOQ4-
FAOS:
FAOQ&:
FAO7:
FAOE:
FAO9:
FAQA:
FAOE:
FAOC:
FAOD:
FAGE:
FAOF:
FA10:
FAll:
FAal2:
FA13:
Fal4:
FA15:
FAlG:
FA17:
Fa18:
FA19:
FAlA:
FA1B:
FAlC:
FA1D:
FALE:
FALF:
Faz20:

24
52
1B
23
24
53
19
Al
00
1A
5B
SR
AS
69
24
24
AE
AE
A8
AD
29
00
7¢
00
15
9c
&D
9c
AS
69
29
53
84
13
34
11

AS
69
23
AO
D8
62
54
48
26
62
94
88

44
ce
54
68
a4
E|
94
00
B4
o8
84
74
B4
28
6E
74
Fa
cc
44
72
F2
A4
84
00

434
435
436
437
438
439
440
441
44z
443
444
445
446
447
448
439
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

73
474
475
476
477
478
479
48¢
431
482
483
484
485
484
ag7
488
489
450
491
492
493
494
495
494
497
498
499
500
501
502
503
504
505
504

MNEMR

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFD
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFEB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFR
DFE
CFRB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

$24
$53
$1B
$23
$24
$53
$19
$A1
$00
$1A
$5B
458
$AS5
469
$24
$24
$AE
$AE
$AB
$AD
$29
$00
$7C
$00
$15
$9C
6D
$9C
$A5
$69
$29
$53
$84
$13
$34
$11
$A5
$69
$23
$A0
$DB
$62
$5A
$48
%26
$62
%94
$88
$54
$44
$C8
$54
$68
$44
$EB
$94
$00
$54
%08
84
$74
$B4
$28
$6E
$74
$F4
$CC
$44
$72
$F2
$A4
$8A
$00

142



FAZ21:
FA22:
FAZ23:
FA24:
FA25:
FA26:
FAZ27:
FA28:
FART:
FA2A:
FA2B:
FA2C:
FA2D:
FA2E:
FAZF:
FA30:
FA31:
FA32:
FA33:
FA34:
FA35:
FA36:
FA37:
FA3B:
FAR9:
FA3A:
FAZ3B:
FA3C:
FAGD:
FA3E:
FARF:
FA4C:
FA40:
Fa4z:
FA43:
FA44:
FA4S:
FA4éb:
FA47:
FA49:
Fa4C:
FA4D:
FAS0:
FAS1:
FAS3:
FAB4:
FAS6:
FA59:
FASC:
FASF:
FAs2:
FALS:
FALL:
FA&T:
FAGC:
FA&F:
FA72:
FA75:
FA78:
FA7B:
_FA7E:
FA81:
FAB2:
FABS:
FAB8:
FABA:
FABD:
FABF:
FA%92:
FA?4:
FA%6:
FAQ2:
FA9B:

Ad

e}
2

A2
74
74
74
72
44
68
B2
32
B2
00
22
00
14
14

=
24

26
72
72
88
c8
ca
ca
26
48
44
44
a2
ce

85
68
48
oA
0A
0A
30
&C
28
20
68
85
68
e5
6C
20
20
4c
De
20
20
20
20
AD
AD
AD
AD
AD
2c
D8
20
AD
49
CD
DO
AD
DO
A?
CcD
DO
AOQ

45

03
FE

4C

3A

3B
FO
ez
DA
&5

84
oF
93
89
58
54
5D
5F
FF
10

3A
F3
AS
Fa
17
F2
OF
EO
F3
08
03

03

FF

03
F8
FA
FF

FE
FB
FE
FE
co
co
co
co
CF
co

FF
03

03

03

507
508
509
510
511
512
513
514
515
Sle
517
Sie
519
520
S21
S22
523
524
525
526
Sa7
528
529
530
531
532
532
534
535
536
537
53z
539 IRQ
540
541
542
543
544
545
S48
547 BREAK
548
549
550
551
552
553
554 OLDBRK
555
55&
557 RESET
558
559
560
561
562 INITAN
563
564
565
566
567
568 NEWMON
569
570
571
572
573
574
575
57¢&
577
578
579 FIXSEV

DFB $AA
DFB $A2
DFB sA2
DFB %74
DFB %74
DFB %74
DFB %72
DFB %44
DFB %68
DFB B2
DFB 32
DFB B2
DFE %00
DFB %22
DFE %00
DFBE %1A
DFB $1A
DFB %26
DFB %26
DFB %72
DFB 472
DFB 88
DFE $C8
DFB %C4
DFB %CA
DFE %26
DFB %48
DFB %44
DFB %44
DFE $A2
DFB %CB
PAGE
STA ACC
PLA

PHA

ASL A
ASL A
ASL A
BMI BREAK

JMP (IRQLOC)

PLF
JSR BAV1
PLA
STA PCL
PLA
STA PCH

JMP (BRKV) i BRKV WRITTEN OVER BY DISK BOOT
JSR INSDS1
JER RGDSP1

JMP MON
CLD

JER SETNORM

JER INIT

DO THIS FIRST THIS TIME

JBR SETVID
JSR SETKBD

LDA SETANO
LDA SETAN1L
LDA CLRANZ2
LDA CLRAN3
LDA CLRROM

ANO
AN1

TTL HI
TTL HI
AN2 TTL LO
AN3 TTL LO
TURN OFF EXTNSN ROM

nmnnoun

BIT KBDSTRB ; CLEAR KEYBOARD

CLD
JSR BELL

;i CAUSES DELAY IF KEY BOUNCES

LDA SOFTEV+1 ; IS RESET HI

EOR #$A5

i A FUNNY COMPLEMENT OF THE

CHMP PWREDUP ; PWR UP BYTE 777

BNE PWRUP

i NO SO PWRUP

LDA SOFTEV ; YES SEE IF COLD START

BNE NOFIX
LDA #$EO

i HAS BEEN DONE YET?

CMP SOFTEV+1 ;i 7?7

BNE NOFIX
LDY #3

i YES SO REENTER SYSTEM
i NO SO POINT AT WARM START

143



FASD:
FAAO:
FAA3:
FAAG:
FAAG:
FAAD:
FAA:
FAAB:
FAAE:
FAB1:
FAB2:
FAB4:
FAB6:
FABS:
FABA:
FABC:
FABE:
FACO:
FAC2:
FAC4:
FAC7:
FAC®?:
FACC:
FACE:
FACF:
FADO:
FADZ:
FADS:
FAD&:
FAD7:
FAD7:
FADA:
FADC:
FADE:
FAEOQ:
FAEZ:
FAE4:
FAEG:
FAEZ:
FAEC:
FAEF:
FAF1:
FAF4:
FAF4:
FAF&:
FAF9:
FAFA:
FAFC:
FAFD:
FAFF:
FBoO2:
FBOS:
FBO&:
FBO®9:
FBOC:
FBOF:
FB11:
FB11:
FB14:
FB16:
FB19:
FB19:
FBiC:
FB1E:
FB21:
FB21:
FB23:
FB24:
FB25:
FB28:
FB2A:
FB2B:
FB2D:

8c
4c
&C

A2
BD
7D
CA
DO
AR
86
85
AO
Ccé6
AS
ce
FO
8D
B1
D9
Do
88
88
10
=1
EA
EA

20
A9
es
A%
85
AR
AT
20
BD
20
AP

20

BS
20
ES
30
60
59
00
20
FF
03
c1
cc
DD

ca
FF
FF

Cc1
DO
AD

AO
EA
EA
BD
10
c8
DO
88

Fa2
00

F2

60

05
FC
EF

E7
c8
00
o1
07
01
(¢33
co
D7
F8
CO
01
EC

FS5
00

8E
45
40
00
41
FB
AO
ED
1E
ED
BD
ED

4A
DA

EB

FA
EO
FF

FF
Do
cs
DB

ca
c3
FF
D8
D3
70
00
b4
04

F8

03
EO
03
FB

Fa
03

07

FB

00

FD

FD
FaA
FD

FD

FD

45
00

ac
DO
A0
ct
FF
D9

Cco

co

580
581
582
583
584
585
584
587
588
589
590
591
592
593
594
595
596
597
59¢e
599
600
601
&02
603
604
605
H0&
607
608
609
610
611
&12
613
&14
615
616
&17
618
619
620
621
622
623
&24
625
626
627
628
629

630
631
632
633
634
635
636
637
638
639
&40
641
642
643
644
645
646
647
648
649
650
651

STY SOFTEV ; FOR NEXT RESET
JMP BASIC ; AND DO THE COLD START
NOFIX JMP (SOFTEV) ; SOFT ENTRY VECTOR

PWRUP JSR APPLEII

SETPG3 EQU *# i SET PAGE 3 VECTORS
LDX #5
SETPLP LDA PWRCON-1,X ; WITH CNTRL B ADRS

STA BRKV-1,X ; OF CURRENT BASIC
DEX
BNE SETPLP
LDA #$C8 i LOAD HI SLOT +1
STX LOCO i SETPG3 MUST RETURN X=0
STA LOC1 i SET PTR H
SLOOP LDY #7 i Y IS BYTE PTR
DEC LOC1
LDA LOC1
CMP #%$CO i AT LAST SLOT YET?
BEQ FIXSEV ; YES AND IT CANT BE A DIGK
STA MSLOT
NXTBYT LDA (LBCO),Y i FETCH A SLOT BYTE

CMP DISKID-1,Y ; IS IT A DISK 77
BNE SLOOP ; ND SO NEXT SLOT DOWN
DEY
DEY i YES S0 CHECK NEXT BYTE
BPL NXTBYT ;i UNTIL 4 CHECKED
WMP (LOCO)
NOP
NOP
# REGDSP MUST ORG $FAD7
REGDSP JSR CROUT
RGDSP1 LDA #$45
STA A3L
LDA #$00
STA A3H
LDX #%$FB
RDSP1 LDA #$A0
JSR COUT
LDA RTBL-251, X
JSR COUT
LDA #$BD
JER COUT
# LDA ACC+5, X
DFB $BS, $4A
JSR PRBYTE
INX
BMI RDSP1
RTS
PWRCON DW OLDBRK
DFB $00, $EO0, $45

DISKID DFEB %20, $FF, $00, $FF
DFB 403, $FF, $3C
TITLE DFB %C1, $DO, $DO
DFB $CC, $C5, $A0
DFB $DD, $DB
XLTBL EQU
DFB $C4, $C2, $C1
DFB $FF, $C3
DFB $FF, $FF, $FF
# MUST ORG $FB19
RTBL DFB #C1, $D8, $D%?
DFB DO, $D3
PREAD LDA PTRIG
LST ON
LDY #$00
NOP
NOP
PREAD2 LDA PADDLO, X
BPL RTS2D
INY
BNE PREAD2
DEY

144



FB2E: &0 652 RTS2D RTS

FB2F: A% 00 2 INIT LDA #$00

FB31: 85 4B 2 STA STATUS

FB33: AD 56 CO 4 LDA LORES

FB3&: AD 54 CO 5 LDA LOWSCR

FB3%: AD 51 CO 6 SETTXT LDA TXTSET

FB3C: A9 00 7 LDA #$00

FB3E: FO OB 8 BEQ SETWND

FB4C: AD 50 CO ? SETGR LDA TXTCLR

FB43: AD 353 CO 10 LDA MIXSET

FB4&: 20 3& F8 11 JSR CLRTOP

FB49: A% 14 12 LDA #%14

FB4B:. 85 22 12 SETWND STA WNDTOP

FB4D: A9 00 14 LDA #$00

FB4F: 85 2 i3 STA WNDLFT

FB51: A9 28 16 LDA #%$28

FBS3: B85 2 17 STA WNDWDTH

FBSS: A9 18 18 LDA #$18

FBS7: 85 23 19 STA WNDBTM

FB5%9: A% 17 20 LDA #$17

FBSE: S 25 21 TABV STA CV

FBSD: 4C 22 FC 22 JMP VTAB

FB&O: 20 58 FC 23 APPLEII JSR HOME i CLEAR THE SCRN
FB&3: AO 08 24 LDY #8

FB&5: BY 08 FB 25 STITLE LDA TITLE-1,Y ; GET A CHAR
FB&8: 99 OE C4 26 STA LINE1+14,Y

FB&EB: 88 27 DEY

FB6C: DO F7 28 BNE STITLE

FB&E: 60 a9 RTS

FB&F: AD F3 03 30 SETPWRC LDA SOFTEV+1

FB72: 49 A5 31 EOR #3$A5

FB74: 8D F4 03 32 STA PWREDUP

FB77: 60 <l RTS

FB78: 34 VIDWAIT EQU i CHECK FOR A PAUSE
FB78: €% 8D 35 CMP #¢8D ; ONLY WHEN I HAVE A CR
FB7A: DO 18 36 BNE NOWAIT ; NOT SO, DO REGULAR
FB7C: AC 00 CO 37 LDY KBD i IS KEY PRESSED?
FB7F:. 10 13 38 BPL NOWAIT ; NO

FB81: CO 93 39 CPY #%$93 i Is IT CTL 8 7
FB83: DO OF 40 BNE NOWAIT ; NO SO IGNORE

FBBS: 2C 10 €O 41 BIT KBDSTRB ; CLEAR STROBE
FB88: AC 00 CO 42 KBDWAIT LDY KBD i WAIT TILL NEXT KEY TO RESUME
FBBB: 10 FB 43 BPL KBDWAIT ; WAIT FOR KEYPRESS
FB8D: CO 83 44 CPY #%$83 i I8 IT CONTROL C 7
FBBF: FO 03 S BEQ NOWAIT ; YES SO LEAVE IT
FB®1: 2C 10 CO 46 BIT KBDSTRB ; CLR STROBE

FB?4: 4C FD FB 47 NOWAIT JMP VIDOUT ; DO AS BEFORE

FBY97: 48 PAGE

FR®7: 38 49 ESCOLD SEC ; INSURE CARRY SET
FB98: 4C 2C FC 50 JMP ESC1

FBIE: A8 51 ESCNOW TAY i USE CHAR AS INDEX
FB?C: B9 48 FA 52 LDA XLTBL-%C9,Y ; XLATE IJKM TO CBAD
FB9F: 20 97 FB 53 JSR ESCOLD ; DO THIS CURSOR MOTION
FBA2: 20 0OC FD 54 JSR RDKEY ; AND GET NEXT

FBAS: C9 CE 55 ESCNEW CMP #%CE i IS THIS AN N ?
FBA7: BO EE 56 BCS ESCOLD ; N OR GREATER DO IT
FBA%: C9 C9 57 CMP #£C9 i LESS THAN 1 7
FBAB: 20 EA 58 BCC ESCOLD ; YES SO OLD WAY
FBAD: C% CC 59 CMP #4¢CC i I8 IT AL

FBAF: FO E& 60 BEQ ESCOLD ; DO NORMAL

FBE1: DO EB (=31 BNE ESCNOW ; 60 DD IT

FBB3: EA 62 NOP

FBB4: EA (=¥ NOP

FBBS: EA 64 NOP

FBB&: EA 65 NOP

FBB7: EA =) NOP

FBB8: EA 7 NOP

FBB?: EA 68 NOP

FBBA: EA 69 NOP

145



FBBB: EA 70 NOP

FBBC: EA 71 NOP

FBBD: EA 72 NOP

FBBE: EA 73 NOP

FBBF: EA 74 NOP

FBCO: EA 75 NOP

FBC1: 76 * MUST ORG $FBC1

FBC1: 48 77 BASCALC PHA

FBC2: 44 78 LSR A

FBC3: 29 03 79 AND #$03

FBCS: 09 04 80 ORA #$04

FBC7: 85 29 81 STA BASH

FBC9: &8 82 PLA

FBCA: 29 18 83 AND #%$18

FBCC: <0 02 84 BCC BASCLC2

FBCE: &9 7F 85 ADC #%7F

FBDO: 85 28 86 BASCLC2 STA BASL

FBD2: OA 7 ASL A

FBD3: OA 88 ASL A

FBD4: G5 28 89 ORA BASL

FBD&6: 85 28 20 STA BASL

FBD8: &0 91 RTS

FBD?: C9 87 92 BELL1 CMP #%$87

FBDB: DO 12 93 BNE RTS2B

FBDD: A9 40 94 LDA #$40

FBDF: 20 AB FC 95 JSR WAIT

FBE2: A0 CO Q6 LDY #&CO

FBE4: A9 0C ?7 BELLZ2 LDA #$0C

FBE&: 20 AB FC 98 JSR WAIT

FBE?: AD 30 €0 99 LDA SPKR

FBEC: 88 100 DEY

FBED: DO F5 101 BNE BELL2

FBEF: &0 102 RTS2B RTS ’

FBFO: 103 PAGE

FBFO: A4 24 104 STORADV LDY CH

FBF2: <1 28 105 STA (BASL),Y

FBF4: EO6 24 106 ADVANCE INC CH

FBF&: A5 24 107 LDA CH

FBFB: C5 21 108 CMP WNDWDTH

FBFA: B0 66 109 BECS CR

FBFC: &0 110 RTS3 RTS

FBFD: C9 A0 111 VIDOQUT CMP #$40

FBFF: BO EF 112 BCS STORADV

FCO1: A8 113 TAY

FC02: 10 EC 114 BPL STORADY

FCO4: C9 8D 115 CMP #%$8D

FCO&: FO 5A 116 BEQ CR

Fcos: C9 8aA 117 CMP #$8A

FCOA: FO 5A 118 BEG LF

FCOC: C9 B8 119 CMP #%88

FCOE: DO C9 120 BNE BELL1

FC1C: Cé6 24 121 BS DEC CH

FCi2: 10 E8 122 BPL RTS3

FCi4: AS 21 123 LDA WNDWDTH

FCié: 85 24 124 STA CH

FC1B: Cé 24 125 DEC CH

FC1A: A5 22 126 UP LDA WNDTOP

FC1C: C5 25 127 CMP CV

FCLE: BO 0B 12e BCS RTS4

FC20: C6 25 129 DEC cVv

FC22: A5 25 130 VTAB LDA CV

FC24: 20 C1 FB 131 VTABZ JSR BASCALC

FC27: &5 20 132 ADC WNDLFT

FC29: 85 28 133 STA BASL

FC2B: &0 134 RTS4 RTS

FC2C: 49 co 135 ESC1 EOR #%$CO i ESC e »
FC2E: FO 28 136 BEQ HOME i IF SO DO HOME AND CLEAR
FC30: &9 FD 137 ADC #$FD i ESC—A OR B CHECK
FC32: <0 co 138 BCC ADVANCE i A, ADVANCE
FC34: FO DA 139 BEQ BS i B, BACKSPACE
FC3&6: &9 FD 140 ADC #$FD i ESC=C OR D CHECK
FC38: <0 2C 141 BCC LF i C, DOWN
FC3A: FO DE 142 BEQ UP i D, GO UP

146



FC3C:
FC3E:
FC40:
FC42:
FC44:
FC46:
FC47:
FC4A:
FC4D:
FCA4F:
FC50:
FC52:
FC54:
FC56:
FCS58:
FC5A:
FCS5C:
FCSE:
FC&0:
FC&2:
FC&2:
FC&4:
FCb6:
FC&8:
FC6A:
FC&C:
FCOE:
FC70:
FC72:
FC73:
FC76:
FC78:
FC7A:
FC7C:
FC7E:
FCBO0:
FCB81:
Fcaa:
FC84:
FCB6&:
FC88:
FCBe:
FCBC:
FCBE:
FCR0:
FC?1:
FC93:
FC?5:
FCQR7:
FCoA:
FCoC:
FCoE:
FCAO:
FCAZ2:
FCA3:
FCAS:
FCA7:
FCAB:
FCAS:
FCAA:
FCAC:
FCAE:
FCAF:
FCB1:
FCB3:
FCB4:
FCBé&:
FCB8:
FCBA:
FCEBC:
FCBE:
FCCO:
Fcca:

69
?0
DO
AL
AS
48
20
20
AO
68
&9
CS
?0
BO
AS
85
AQ
84
FO

A9
85
E6
A5
cs
90
Co6
AS
48
20
AS
85
AS
85
A4
88
68
69
cs
BO
48
20
B1
91
88
10
30
AO
20
BO
As4
A9
1
ce
ca
90
60
38
a8
E9
Do
68
E9
DO
60
Eb
DO
E6
A5
cs
AS
ES
E6

FD
5¢
E9
24

25

24
9E
00

00
23
FO
CA
22
25
00
24
E4

00
24
25
25
23
Bé
25
22

24
28
2A
29
2B
21

01
23
oD

24
28
2A

Fo
El
00
9E
86
24
A0
28

21

FS

01
FC

01
Fé6

42
02
43
3C
3E
3D
3F
3C

FC
FC

FC

FC

FC

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
i62
163
164
165
166
167
168
169
170
171
172
173
174
175
176
Y77
17e
179
18¢
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CLREOP

CLEOP1

HOME

CR

LF

SCROLL

SCRL1

SCRL2

SCRL3

CLREOL
CLEOLZ
CLEOL2

WAIT
WAIT2
WAIT3

NXTA4

NXTA1

ADC
BCC
BNE
LDY
LDA
PHA
JER
JSR
LDY
PLA
ADC
CMP
BCC
BCS
LDA
STA
LDY
STY
BEQ

#$FD i
CLREOL
RTS4 i
CH i
cv

VTABZ
CLEOLZ
#4500

#$00
WNDBTM
CLEOP1
VTAB
WNDTOP

PAGE

LDA
STA
INC
LDA
CHMP
BCC
DEC
LDA
PHaA
JSR
LDaA
STA
LDA
STA
LDY
DEY
PLA
ADC
cMP
BCS
PHA
JER
LDA
STA
DEY
BPL
BMI
LDY
JER
BCS
LDY
LDA
STA
INY
CPY
BCC
RTS
SEC
PHA
SBC
BNE
PLA
SBC
BNE
RTS
INC
BNE
INC
LDA
CMP
LDA
SBC
INC

cv
WNDBTM
VTABZ
cv
WNDTOP

VTABZ
BASL
BASZ2L
BASH
BAS2H
WNDWDTH

#%01
WNDBTM
SCRL3

VTABZ
(BASL), Y
(BAS2L), Y

SCRL2
SCRL1
#%$00
CLEOLZ
VTAB

CH

#$A0
(BASL) .Y

WNDWDTH
CLEOL2

#3$01
WAIT3

#$01
WAIT2

A4L
NXTA1
A4H
AlL
A2L
AlH
A2H
AlL

147

ESC-E DR F CKECK

E, CLEAR TO END OF LINE
ELSE NOT F, RETURN

ESC F IS CLR TO END OF PAGE



FCC4:
FCCé6:
FCe8:
FEC:
FCCo:
FCCB:
FCCE:
FCDO:
FCD2:
FCD4:
FCDé&:
FCD®?:
FCDA:
FCDB:
FCDC:
FCDE:
FCEO:
FCEZ2:
FCE3:
FCES:
FCES:
FCEA:
FCEB:
FCEC:
FCEE:
FCEF:
FCFa:
FCF3:
FCF4:
FCFé6:
FCF7:
FCF9:
FCFA:
FCFD:
FCFE:
FDO1:
FDO3:
FDO5:
FDO7:
FDO%:
FDOB:
FDOC:
FDOE:
FD10:
FD11:
FD13:
FD15:
FD17:
FD18:
FD1B:.
FD1D:
FD1F:
FD21:
FD24:
FD26:
FD28:
FD2B:
FD2E:
FD2F:
FD32:
FD35:
FD38:
FD3A:
FD3C:
FD3D:
FD3D:
FD3F:
FD40:
FD42:
FD44:
FD47:
FD4A:
FD4B:

DO
Eé&
60

AO
20
DO
69
BO
A0
20
c8
ce
88
Do
90
AO
88
DO
AC
A0
ca
60
a2
48
20
68
2a
A0
cA
Do
60
20
88
AD
45
10
45
85
co
60
as
B1
48
29
09
%1
68
6C
E6
DO
E6
ac
10
91
AD
2c
60
20
20
20
co
Fo
&0

AS
48
AQ
85
BD
20
&8
85

oz

3D

4B
DB
Fo
FE
F5
21

DB

FD
05
32

FD
20

2c

08

FA

3A
F5
FD

60
2F
FB8
aF
2F
80

24
28

3F
40
28

38
4E
oz
4F
00
F5
28
00
10

ocC
AS
ocC
?B
F3

FF
32
00
ED

32

FC

FC

co

FC

FC

co

00

co

co
co

FD
FB
FD

o2
FD

216
217
218
219
220
221

222

223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
2564
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284
285
286
287
288

RTS4B

HEADR

WRBIT

ZERDLY

ONEDLY

WRTAPE

RDBYTE
RDBYT2

RD2BIT
RDBIT

RDKEY

KEYIN

KEYIN2

ESC

RDCHAR

NOTCR

BNE
INC
RTS
PAGE
LDY
JSR
BNE
ADC
BCS
LDY
JER
INY
INY
DEY
BNE
BCC
LDY
DEY
BNE
LDY
LDY
DEX
RTS
LDX
PHA
JSR
PLA
ROL
LDY
DEX
BNE
RTS
JBR
DEY
LDA
EOR
BPL
EOR
STA
CPY
RTS
LDY
LDA
PHA
AND
ORA
STA
PLA
JMP
INC
BNE
INC
BIT
BPL
STA
LDA
BIT
RTS
JSR
JSR
JER
CMP
BEQ
RTS
PAGE
LDA
PHA
LDA
STA
LDA
JSR
PLA
STA

RTS4B
ALH

#$4B
ZERDLY
HEADR
#SFE
HEADR
#6521
ZERDLY

ZERDLY
WRTAPE
#4$32

ONEDLY
TAPEOUT
#$2C

#$08
RD2BIT

A
#$3A

RDBYT2
RDBIT

TAPEIN
LASTIN
RDBIT
LASTIN
LASTIN
#$80

CH
(BASL), Y

#$3F
#$40
(BASL), Y

(KSWL)
RNDL
KEYINZ2
RNDH

KBD i
KEYIN
(BASL)., Y
KBD
KBDSTRB

RDKEY
ESCNEW
RDKEY
#$9B
ESC

INVFLG
#SFF
INVFLG
IN, X
cout

INVFLG

148

READ KEYBOARD



FD4D:
FD50:
FDS2:
FD54:
FDSé6:
FDS8:
FDSA:
FDSC:
FD5F:
FD&O:
FD&2:
FD&4:
FD&7:
FD6A:
FD&C:
FD6&F :
FD71:
FD72:
FD74:
FD75:
FD78:
FD7A:
FD7C:
FD7E:
FDB8O:
FDB82:
FDB84:
FDB7:
FDB9:
FDB8B:
FD8E:
FD?0:
FD92:
FD?4:
FD9&:
FD?9:
FD9C:
FD9E:
FDAO:
FDA3:
FDAG:
FDAS:
FDA7:
FDA%:
FDAB:
FDAD:
FDAF:
FDB1:
FDB3:
FDBé&:
FDB8:
FDEB:
FDBD:
FDCO:
FDC3:
FDC5:
FDCé:
FDC7:
FDC9:
FDCA:
FDCB:
FDCD:
FDCF:
FDD1:
FDD3:
FDD4:
FDDé&:
FDD9:
FDDA:
FDDB:
FDDC:
FDDD:
FDDE:

BD
ce
FO
ce
FO
EO
?0
20
E8
DO
A9
20
20
AS
20
A2
8A
FO
CA
20
ce
DO
B1
ce
90
29
9D
ce
DO
20
A9
DO
A4
Ab
20
20
AO
AQ
4C

AS
09
85
AS
85
AS
29

20
A9
20
Bt
20
20
%0
60
44
%0
44
4a
AS
90
49
65
48
I
20
68
48
44
4a
44
4a

00
88
iD
78
0A
F8
03
3A

13
DC
ED
8E
33
ED
o1

F3

35
95
o2
28
EO
o2
DF
00
8D
B2
eC
en
SB
3D
3C

40
00
AD
ED

3C
07
3E
3D
3F
3C
07
03
92
AD
ED
3C
DA
BA
E8

EA

3E
02
FF
ac

BD
ED

[oF=]

FF

FD
FD

FD

FD

FC

FD

F9

FD

FD

FD

FD
FC

FD

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
219
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
34
349
350
351
352
353
354
355
356
357
358
359
360
361

NOTCR1

CANCEL

GETLNZ

GETLN

BCKSPC

NXTCHAR

CAPTST

ADDINP

CROUT

PRA1

PRYX2

XAMB

MODBCHK

XAM
DATADUT

RTS4C
XAMPM

ADD

PRBYTE

LDA
CMP
BEQ
CMP
BEQ
CPX
BCC
JSR
INX
BNE
LDA
JER
JSR
LDA
JSR
LDX
TXA
BEQ
DEX
JSR
CMP
BNE
LDA
CMP
BCC
AND
STA
CMP
BNE
JSR
LDA
BNE
LDY
LDX
JSR
JER
LDY
LDA
JMP
PAGE
LDA
ORA
STA
LDA
STA
LDA
AND
BNE
JBR
LDA
JER
LDA
JER
JSR
BCC
RTS
LSR
BCC
LSR
LSR
LDA
BCC
EOR
ADC
PHA
LDA
JSR
PLA
PHA
LSR
LSR
LSR
LSR

IN, X
#$88

BCKSPC

#5986

CANCEL

#$F8

NOTCR1

BELL

NXTCHAR

#%DC
couT
CROUT

PROMPT

couT
#%$01

GETLNZ

RDCHAR

#%$95

CAPTST
(BASL).,Y

#$EO

ADDINP

#$DF
IN, X
#%$8D
NOTCR

i

CLREOL

#$8D
couT
AlH
AlL
CROUT

PRNTYX

#$00
#$AD
cout

AlL
#$07
A2L
AlH
A2H
AlL
#3507

DATAQUT

PRA1
#$A0
couT

(AL1L), Y
PRBYTE

NXTA1L

MODBCHK

A
XAM
A

A
A2L
ADD
#SFF
AlL

#$BD
couT

>>> >

149

SHIFT TO UPPER CASE



FDDF:
FDE2:
FDE3:
FDES:
FDE7:
FDE®:
FDEB:
FDED:
FDFO:
FDF2:
FDF4:
FDF&:
FDF8:
FDF%:
FDFC:
FDFD:
FDFF:
FEOO:
FEQG:
FEO2:
FEO4:
FEOS:
FEO7:
FEO®?:
FEOB:
FEOD:
FEOF:
FE11:
FE13:
FE15:
FE17:
FE18:
FE1A:
FE1D:
FELF:
FE20:
FE22:
FE24:
FE26:
FE28:
FE29:
FE2B:
FE2C:
FE2E:
FE30:
FE33:
FE35:
FE36:
FE38:
FE3A:
FEZ2C:
FE3F:
FE41:
FE44:
FE46:
FE49:
FE4B:
FE4E:
FESO0:
FE53:
FES5:
FES8:
FESB:
FESD:
FESE:
FE61:
FE&3:
FE&4:
FE&L7:
FE&A:
FE&C:
FEGE:
FE&F:

20
68
29
09
co
90
69
&C
co
90
25
84
48
20
68
ot
60

cé
FO
cA
Do
c9
DO
85
AS
91
E&
Do
E&
&0
A4
B9
85
60
Az
BS
95
95
ca
10
60
B1
91
20
90
60
B1
D1
FO
20
B1
20
AP
20
A
20
B1
20
A9
20
20
90
&0
20
A9
48
20
20
85
84
68
as

ES

OF
BO
BA
o2
06
36
AO
o2
a2

35

78

35

34
F

16
BA
BB
31
3E
40
40
oz
41

34
FF
31

o1
3E
42
44

F7

3C
42
B4
F7

-
>

42
ic

=)
=

3¢
DA
AQ
ED
A8
ED
42
DA
A9
ED
B4
D9

75
14

DO
53
3A
3B

FD

(efe]

FB

01

FC

FD

FD

FD

FD

FD

FD

FC

FE

F8
Fo

362
363
364
365
366
367
368
369
370
371
372
373
374
375
37&
377
378
372
280
381
282
383
384
385
386
387
388
389
390
391
372
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
42

425
426
427
428
429
430
431
432
433
434

PRHEX
PRHEXZ

couT
CDOUT1

couTz

BL1

BLANK

STOR

RTSS
SETMODE

SETMDZ

LT
T2

MOVE

VFY

VFYOK

LIST

LIST2

JSR
PLA
AND
ORA
cMP
BCC
ADC
JMP
cMP
ECC
AND
STY
PHA
JER
PLA
LDy
RTS
PAGE
DEC
BEG
DEX
BNE
CMP
BNE
STA
LDA
STA
INC
BNE
INC
RTS
LDY
LDA
STA
RTS
LDX
LDA
STA
STA
DEX
BPL
RTS
LDA
STA
JSR
BCC
RTS
LDA
CMP
BEQ
JSR
LDA
JSR
LDA
JSR
LDA
JER
LDA
JSR
LDA
JSR
JSR
BCC
RTS
JER
LDA
PHA
JSR
JSR
STA
STY
PLA
SEC

PRHEXZ

#$0F
#$BO
#5BA
couT
#%06
(CSWL)
#$A0
couTz
INVFLG
YSAV1

VIDWAIT i GO CHECK FOR PAUSE

YSAV1

YSAV
XAMB

SETMDZ
#$BA
XAMPM
MODE
A2L
(A3L), Y
A3L
RTSS
A3H

YSAV
IN-1,Y
MODE

#3501

AZL, X
A4L, X
ASL, X

LT2

(AL1L), Y
(A4L), Y
NXTA4
MOVE

(ALL), Y
(A4L), Y
VFYOK
PRAL
(ALL)., Y
PRBYTE
#$A0
couT
#$A8
couT
(AdL), Y
PRBYTE
#$A9
cout
NXTA4
VFY

Al1PC
#5514

INSTDSP
PCADJ
PCL

PCH

150



FE70:
FE72:
FE74:
FE75:
FE7S:
FE76:
FE78:
FE7A:
FE7C:
FE7D:
FE7F:
FEBO:
FEB2:
FEB4:
FEB6:
FEB8:
FEB%:
FEBB:
FEB8D:
FEBF:
FE91:
FE?3:
FE®S:
FE?7:
FE99:
FE®B:
FE®9D:
FEZF:
FEAL:
FEA3:
FEAS:
FEA7:
FEA9:
FEAS:
FEAB:
FEAD:
FEAE:
FEAF:
FEBO:
FEB3:
FEBé&:
FEB?:
FEBC:
FEBF:
FEC2:
FEC3:
FEC3:
FEC4:
FECS:
FECé&:
FEC7:
FEC8:
FEC?:
FECA:
FECD:
FECD:
FECF:
FED2:
FED4:
FEDG&:
FEDS8:
FED?:
FEDB:
FEDE:
FEEL:
FEE3:
FEE4:
FEEG6:
FEEB:
FEEB:
FEED:
FEEF:
FEFOQ:

EY
DO
&0

8A
FO
BS
95
cA
10
60
AOQ
DO
AO
84
&0
A9
85
A2
AO
DO
A9
85
A2
AC
AS
29
FO
o4

FO
A9

94
95
60
EA
EA
4c
4c
20
20
6C
4c
60

EA
60
EA
EA
EA
EA
EA
4C

A%
20
A0
a2
41
48
Al
20
20
AO
68
90
A0
20
FO
A2
0A
20

01
EF

07
3C
3A

Fo

aF
02
FF
32

00
3E
38
1B
[¢]=]
00
3E
36
FO
3E
OF
06
co
00
02
FD

00
o1

00
03
75
3F
3A
D7

F8

40
ce
27
00
3C

3C
ED
BA
iD

EE
ED
4D
10

Dé

EO
EO
FE
FF
00
Fa

03

FC

FE
FC

FC

435
434
437
438
439
440
441

442
443
444
445
444
447
448
449
450
451

452
453
454
455
454
457
458
459
460
461

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

492
493
494
495
496
497
498
499
500
501

502
503
504
505
506
507

A1PC

A1PCLP

A1PCRTS
SETINV

SETNORM
SETIFLG

SETKBD

INPORT
INPRT

SETVID
OUTPORT
OUTPRT

IOPRT

IOPRT1
I0PRT2

XBASIC
BASCONT
G0

REGZ
TRACE
# TRACE

STEPZ

USR
WRITE

WR1

WRBYTE
WRBYT2

SBC
BNE
RTS
PAGE
TXA
BEQ
LDA
STA
DEX
BPL
RTS
LDY
BNE
LDY
STY
RTS
LDA
STA
LDX
LDY
BNE
LDA
STA
LDX
LDY
LDA
AND
BEQ
ORA
LDY
BEG
LDA
EQU
STY
STA
RTS
NOP
NOP
JMP
JMP
JER
JSR
JMP
JMP
RTS

#$01
LIsT2

A1PCRTS

AlL, X
PCL., X

A1PCLP

#$3F

SETIFLG

#EFF

INVFLG

#$00
AZL
HKSWL

#HKEYIN

IOPRT
#$00
A2L
#CSWL

#COUT1

A2L
#$0OF

I0OPRT1
#I0ADR/256&

#$00

IOPRT2
#COUT1/256

¥*

LOCO, X
LOC1, X

BASIC

BASIC2

Al1PC

RESTORE

(PCL)

REGDSP

IS GONE

NOP
RTS
NOP
NOP
NOP
NOP
NOP

JMP USRADR
PAGE

LDA
JSR
LDY
LDX
EOR
PHA
LDA
JSR
JSR
LDY
PLA
BCC
LDY
JEBR
BEQ
LDX
ASL
JER

#$40
HEADR
#$27
#$00

(ALL, X)

(AlL, X)
WRBYTE

NXTA1
#$1D

WR1
#$22

WRBYTE

BELL
#%10
A
WRBIT

151

%94, $00
$95, 301

STEP IS GONE



FEF3:
FEFS:
FEFé&:
FEF%:
FEFA:
FEFB:
FEFD:
FFOO:
FFoO2:
FFOS:
FFO7:
FFOA:
FFOC:
FFOF:
FF11:
FF14:
FF16:
FE19:
FF1B:
FF1D:
FF1F:
FF22:
FF24:
FF26:
FF29:
FF2B:
FF2D:
FF2F:
FF32:
FF34:
FF37:
FF3A:
FF3C:
FF3F:
FF3F:
FF41:
FF42:
FF44:
FFa6:
FF48:
FFa49:
FF4A:
FFacC:
FF4E:
FFS50:
FF51:
FF52:
FF54:
FF55:
FF57:
FF58:
FF59:
FF5C:
FFSF:
FF62:
FF65:
FF&5:
FF&6:
FF&9:
FF6B:
FFé&D:
FF70:
FF73:
FF76&:
FF78:
FF7A:
FF7B:
FF7D:
FFB80:
FF82:
FFB5:
FF87:
FFBA:

DO
60
20
68
68
DO
20
A9
20
85
20
AO
20
BO
20
AD
20
81
45
85
20
AO
20
20
CcS
FO
AQ
20
A9
20
20
A9
4C

AD
48
AS
A&
A4
28
60
85
86
84
08
68
85
BA
86
De
60

&
=3

20
20
20

D8
20
AQ
85
20
20
20
84
AQ
88
30
D%
DO
20
Al
4C
A2

Fa

00

6C
FA
16
co

it
2l

FA
24
FD
F2
FD
3B
EC
3C
2E
2E
BA
35
FO
EC
2E
oD
CcS5
ED
D2
ED
ED
87
ED

48

45
45
47

45
46
47

48

49

84
2F
93
89

3A
AA
33
67
c7
A7
34
17

E8
cC
F8
BE
34
73
03

FE

FC

FC

FC

FC

FC

FC

FC

FC

FD

FD
FD

FD

FE
FB
FE
FE:

FF

FD
FF
FF

FF

FF

FF

508
509
510
511t
512
513
514
515
516
517
518
519
520
521
S22
5223
524
525
526
°27
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
542
544
545
546
547
548
549
550
551
552
552
554
555
556
557
558
559
560
561
562
563
564
565
566
567
5&8
569
570G
571
572
573
574
575
576
577
57¢€
579
580

CRMON

READ

RD2

RD3

PRERR

BELL

RESTORE

RESTR1

SAVE
SAV1

OLDRST

MON

MONZ

NXTITM

CHRSRCH

DIG

BNE
RTS
JSR
PLA
PLA
BNE
JER
LDA
JSR
STA
JSR
LDY
JSR
BCS
JSR
LDY
JSR
STA
EOR
STA
JSR
LDY
BCC
JSR
CMP
BEG
LDA
JER
LDA
JSR
JER
LDA
JMP

PAGE

LDA
PHA
LDA
LDX
LDY
PLP
RTS
STA
STX
sTY
PHP
PLA
STA
TSX
STX
CLD
RTS
JSR
JSR
JSR
JSR

PAGE

CLD
JER
LDA
STA
JSR
JER
JSR
STY
LDY
DEY
BMI
CMP
BNE
JER
LDY
JMP
LDX

WRBYT2

BL1

MONZ
RD2BIT
#$16
HEADR
CHKSUM
RD2BIT
#$24
RDBIT
RD2
RDBIT
#%3B
RDBYTE
(A1L, X)
CHKSUM
CHKSUM
NXTA1
#$35
RD3
RDBYTE
CHKSUM
BELL
#$C5
couT
#$D2
couT
couT
#$87
couT

STATUS

ASH
XREG
YREG

ABH
XREG
YREG

STATUS

SPNT

SETNORM
INIT
SETVID
SETKBD

BELL
#EAA
PROMPT
GETLNZ
ZMODE
GETNUM
YSAV
#5617

MON
CHRTBL., Y
CHRSRCH
TOSUB
YSAV
NXTITM
#3403

152



FF8C:
FF8D:
FFBE:
FFBF:
FF90:
FER1:
FF93:
FF?5:
FF96:
FF98:
FF9A:
FF9C:
FFQC:
FFE:
FF9E:
FFAQ:
FFAO:
FFA2:
FFA3:
FFAS:
FFA7:
FFAD:
FFAB:
FFAD:
FFBO:
FFB1:
FFB3:
FFBS:
FFB7:
FFB9:
FFBB:
FFBD:
FFBE:
FFCO:
FEC1:
FFC4:
FFCS:
FFC7:
FFC%:
FFCB:
FFCC:
FFEC:
FFCD:
FFCE:
FFCF:
FFDO:
FFD1:
FFD2Z:
FFD3:
FFD4:
FFDS:
FFD&:
FFD7:
FFD8:
FFD9:
FFDA:
FFDB:
FFDC:
FFDD:
FFDE:
FFDF:
FFEO:
FFE1:
FFE2

FFE3:
FFE4:
FFES:
FFE&:
FFE7:
FFEB:
FFE?:
FFEA:
FFEB:

oA
0A
0A
oA
0A
26
26
CA
10
AS
DO

BS
?5

95
E8
FO
DO
A2
86
86
B9
c8
49
ce
90
69
c9
BO
40
A9
48
B9
48
AS
A0
84
50

BC
B2
BE
B2
EF
ca
B2
A9
BB
A
A4
06
95
07
oz
05
FO
oc
EB
53
A7
ce
99
B2
c9
BE
¢
35
8c
ca
96
AF

3E
3F

F8
31
06

3F

3D

41

F3
06
00
3E
3F
00

BO
oA
D3
88
FA
CcD

FE
E3
31

00
31

FF

581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
&12
613
614
615
616
617
&le
619
620
621
622
623
624
625
626
627
628
629
630
&31
632
632
634
635
636
&37
638
639
640
é41
642
6432
644
645
646
647
648
649
650
651
652
653

NXTBIT

NXTBAS

#*

#*

+*

NXTBS2

GETNUM

NXTCHR

TOSUB

ZMODE

CHRTBL

SUBTBL

ASL
ASL
ASL
ASL
ASL
ROL
ROL
DEX
BPL
LDA
BNE

LDa

STA

sTA
INX
BEQ
BNE
LDX
STX
STX
LDA
INY
EOR
CMP
BCC
ADC
CcMP
BCS
RTS
LDaA
PHA
LDA
PHA
LDA
LDY
sSTY
RTS
PAGE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFBE
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFE
DFB
DFB
DFB
DFB
DFB
DFR
DFB
DFB
DFB
DFB
DFB
DFB

>>>2> D>

AZL
A2H

NXTBIT
MODE
NXTBS2

A2H, X
AlH, X
A3H, X

NXTBAS
NXTCHR
#$00
AZL
A2H

IN, Y

#%$BO
#%$0A
DIG
#$88
#5FA
DIG

#60/256
SUBTBL., Y

MODE
#%$00
MODE

$BC
$B2
$BE
$B2 i
$EF
sC4
$B2 i
AP
%BD
AL
$A4
$06
$95
$07
$02
%05
$FO
$00
$EB
$93
£A7
$C6
$99
$B2
sC9
$BE
$C1
$35
$8C
$C4
$96
$AF

153

T CMD NOW LIKE USR

S CMD NOW LIKE USR



FFEC:
FFED:
FFEE:
FFEF:
FFFO:
FFF1:
FFF2:
FFF3:
FFF4:
FFFS:
FFFé&:
FFF7:
FFF8:
FFF9:
FFFA:
FFFC:
FFFE:

ENDASM

17
17
2B
iE
83
7F
SD
cc
BS
FC
17
17
FS
03
FB 03
62 FA
40 FA

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DW

bW

DW

$17
$17
$2B
$1F
$83
S7F
$5D
$CC
$BS
$FC
$17
$17
$F5
$03
NMI
RESET
IRG

154



MONITOR ROM LISTING

1 R
b * *
3 ® APPLE II ¥;
4 * SYSTEM MONITOCR ®
5 * *
6 % COPYRIGHT 1977 BY %
7 * APPLE COMPUTER, INC. *
8 * *
9 ® ALL RIGHTS RESERVED *
10 * *
11 i S. WOZNIAK *
12 * A. BAUM *
13 * *
14 Kk kkk kR kkdhkkdhhokkkxhhkk sk
15 TITLE "APPLE II SYSTEM MONITOR"
lo LOCO EPZ  $00

17 LOC1 EPZ $01

138 WNDLFT EPZ $20

19 WNDWDTH EPZ $21

20 WNDTCP EPZ $22

21 WNDBTM EPZ $23

22 CH EPZ $24

23 cv EPZ $25

24 GBASL EPZ $26

25 GBASH EPZ  $27

26 BASL EPZ $28

27 BASH EPZ  $29

28 BAS2L EPZ $2A

29 BAS2H EPZ $2B

3u H2 EPZ $2C

31 LMNEM EPZ $2C

32 RTNL EPZ $2C

33 v2 EPZ $2D

34 RMNEM EPZ $2D

35 RTNH EPZ $2D

36 MASK EPZ $2E

37 CHKsUM EPZ S2E

38 FORMAT EPZ S2E

39 LASTIN EPZ $2F

40 LENGTH EPZ  $2F

41 SIGN EPZ $2F

42 COLOR EPZ §30

43 MCODE EPZ $31

44 INVFLG EPZ $32

45 PROMPT EPZ $33

46 YSAV EPZ $34

47 YSAV1 EPZ $35

48 CSWL EPZ $36

49 CSwWH EPZ  $37

50 XSWL EPZ $38

51 KSWH EPZ $39

52 BCL CPZ $3A

53 PCH EPZ $3B

54 XQT EPZ  $3C

55 AlL EPZ $3C

56 AlH EPZ $3D

57 A2L EPZ $S3E

58 A2H EPZ $3F

59 A3l EPZ $40

ou A3H EPZ $41

61 A4L EPZ $42

62 AdH EPZ $43

63 ASL EPZ $44

64 ASH EPZ $45

65 ACC EPZ $45

66 XREG EPZ $46

67 YREG EPZ $47

638 STATUS EPZ $48

155



FaOu:
F8ul:
F802:
F8053;
F806:
F803:
F80A:
F80C:
F80E:
F810:
F812:
F8l4:
F316:
F8l8:
F819:
F8lC:
F81E:
F820:
F821:
F824:
F826:
F828:
F829:
F82C:
F82D:
F82F:
F831:
F832:
F834:
F836:
F838:

F82A:
F383C:
F83E:
F840:
F843:
F844:
F846:
F847:
F848:

4A
03
20
28
AS
90
69
85
Bl
45
25
51
91
60
20
C4
BO
c8
20
90
69
48
20
68
C5
90
60
Ay
DO
Al
84

A0
A9
85
20
88
10
60
48
4A

47

OF
02
EG
2E
26
30
2E
26

00
2C
11
0E
F6
01l
0o

2D
ES5

2F
02

2D

27
00

28

Fé6

F8

F8

F8

F8

F8

1u0

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

SPNT
RNDL
RNDH
ACL
ACH
XTNDL
XTNDH
AUXL
AUXH
PICK
IN
USRADR
NMI
IRQLOC
IOADR
KBD
KBDSTRB
TAPEOUT
SPKR
TXTCLR
TXTSET
MIXCLR
MIXSET
LOWSCR
HISCR
LCRES
HdIRES
TAPEIN
PADDLO
PTRIG
3ASIC
BASIC2

PLOT

RTMASK
PLOT1

HLINE
HLINE1

VLINEZ
VLINE

RTS1
CLRSCR

CLRTOP
CLRSC2
*

CLRSC3

GBASCALC

EPZ
EPZ
EPZ
EP2Z
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EQU
EQU
EQU
ECU
ECU
ECU
ECU
EQU
ECU
ECU
ECU
EQU
EQU
ECU
EQU
ECU
EQU
EQU
ECU
EQU
EQU
EQU
CRG
LSR
PH

JSR
PLP
LDA
BCC
ADC
STA
LDA
EOR
AND
EOR
STA
RTS
JSR
CPY
BCS
INY
JSR
BCC
ADC
PHA
JSR
PLA
CMP
BCC
RTS
LDY
BNE
LDY
STY

LDY
LDA
STA
JSR
DEY
BPL
RIS
PHA
LSR

156

$49
S4E
‘$4F
$50
$51
$52
$53
$54
$55
595
$0200
$03F &
S03FB
$03FE
$C000
$CO00
$C010
$C020
$C030
$CUS0
$C051
$C052
$C053
$C054
$C055
$CU56
$C057
$CO60
$Co064
$CO70
SEQ00
SEQ03
$SF8U0 RCM START ADDRESS
A Y-COORD/2

SAVE LS5B IN CARRY
GBASCALC CALC BASE ACR IN GBASL,H

RESTORE «LSB FRCM CARRY
#SOF MASK $SOF IF EVEN
RTMASK
#SED MASK $F0 IF ODD
MASK
(GBASL) ,Y DATA
COLOR XOR COLOR
MASK AND MASK
(GBASL) ,Y XOR DATA
(GBASL) , Y TO DATA
PLOT PLOT SQUARE
H2 DONE?
RTS1 YES, RETURN

NO, INCR INDEX (X-COORD)
PLOT1 PLOT NEXT SQUARE
HLINEl ALWAYS TAKEN
#$01 NEXT Y-COORD

SAVE ON STACK
PLOT PLOT SQUARE
V2 DONE?
VLINEZ NO, LOOP.
#$2F MAX Y, FULL SCRN CLR
CLRSC2 ALWAYS TAKEN
#$27 MAX Y, TOP SCRN CLR
v2 STORE AS BOTTOM COORD

FOR VLINE CALLS

#527 RIGHTMOST X-COORD (COLUMN)
#$0 TOP COORD FOR VLINE CALLS
COLOR CLEAR COLOR (BLACK)
VLINE DRAW VLINE

NEXT LEFTMOST X-COORD
CLRSC3 LOOP UNTIL DONE.

FOR INPUT OOODEFGH
A



F849:
FE4B:
F84D:
F84F:
F850:
F852:
F854:
FB856:
F858:
F859:
F85A:
F85C:
F85E:
F35F:
F86l:
Fd62:
FE64:
F866:
Fy63:
F869:
F86A:
F86B:
F86C:
F86E:
Fy870:
F871:
F872:
F873:
F876:
F878:
F879:
F87B:
F87C:
F87D:
F8IE:
F37F:
F83l:
F382:
F884:
F8686:
F889:
F88C:
F8BE:
F33F:
F390:
F892:
F893:
£3895:
F897:
F89Y99:
F89B:
F89C:
F89D:
F8A0:
F8A3:
F8AS:
FBAT:
F8A9:
F8AA:
FBAD:
FBAF:

F38Bl:
F8B3:
F8B4:
F3B6:
F8B7:
F8B8:
F&BA:
F8BC:
F8BE:
F&BF:
F8Cl:

29
09
85
68
29
90
69
85
VA
0A
05
85
60
a5
18
69
29
85
A
0A
0A
[V2:8
U5
85

60

4a
08
29
Bl
28
90
4A
4A
4A
4
29
60
A6
A4
20
20
Al
Ag
4A
90
6a
B0
CS
FO
29
4A
AA
BD
20
DO
Al
A9
AA
BD
85
29

85
98
29
AA
98
AU
EQ
FO
4a
90
4A

03
04

18
02
F
26

26
26

30

03
OF
30

30
30

47
26

UF

3A
38
96
48
3A

09

10
A2
uC
37

62
79
04
80
6o

A6
2E
03

8F

03
8A
UB

F8

FD
F9

F9
F8

F9

143
144
145
146
147
148

150
152

159
160
161
162
163
164
165
166
167
168
169
170
171

215

GBCALC

NXTCOL

SETCOL

SCRN

SCRN2

RTMSKZ

INSDS1

INSDS2

IEVEN

ERR

GETFMT

MNNDX1

AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS
LDA
CLC
aDC
AND
STA
ASL
ASL
ASL
ASL
ORA
STA
RTS
LSR
PHP
JSR
LDA
PLP
BCC
LSR
LSR
LSR
LSR
AND
RTS
LDX
LDY
JSR
JSR
LDA
TAY
LSR
BCC
ROR
BCsS
CMP
BEQ
AND
LSR
TAX
LDA
JSR
BNE
LDY
LDA
TAX
LDA
STA
AND

STA
TYA
AND
TAX
TYA
LDY
CEX
BEQ
LSR
BCC
LSR

GBASCALC
(GBASL) ,Y

RTMSKZ

A
A
A

A
#$0F

PCL
PCH
PRYX2

PRBLNK
(PCL,X)

A

IEVEN

A

ERR
#$A2
ERR
#$87

A

FMT1,X

SCRN2

GETFMT

#$80
#50

FHMT2,X
FORMAT

£SU3

(P=1 BYTE,
LENGTH

#S8F

#$03
#S8A

MNNDX3

A

MNNDX 3

A

157

GENERATE GBASH=000001FG

AND GBASL=HDEDE(00

INCREMENT CCLOR BY 3

SETS COLOR=17*A MOD 16

BCTH HALF BYTES OF COLOR EQUAL

READ SCREEN Y-COORD/2
SAVE LSB (CARRY)

CALC BASE ADDRESS

GET BYTE

RESTORE LSB FRCM CAKRY
IF EVEN, USE LO H

SHIFT HIGH HALF BYTE DCWN
MASK 4-BITS

PRINT PCL,H

FOLLOWED BY A BLANK

GET OP CODE

EVEN/ODD TEST

8IT 1 TEST
XXXXXX11 INVALID OP

OPCODE $89 INVALID
MASK BITS
LSB INTO CARRY FOR L/R TEST

GET FORMAT INDEX BYTE
R/L H-BYTE ON CARRY

SUBSTITUTE $80 FOR INVALID OPS
SET PRINT FORMAT INDEX TG 0

INDEX INTO PRINT FORMAT TABLE
SAVE FOR ADR FIELD FORMATTING
MASK FOR 2-BIT LENGTH

BYTE, 2=3 BYTE)

OPCCDE

MASK FOR 1XXX10lu TEST
SAVE IT

OPCODE TO A AGAIN

FORM INDEX INTO MNEMONIC TABLE



F8C2: 4A 216 MNNDX2 LSR A 1) 1XXX1010=>001U1XXX

F8C3: 09 20 217 ORA #8520 2) XXXYYY0l=>uUlllXXX
F8C5: 88 218 DEY J) XXAYYY10=>00110XXX
F8C6: DO FA 219 BNE MNNDX2 4) XXXYY100=>0uluOXXX
F8C8: C38 220 INY 5) XXXXX0u0=>000XXXXX
F8C9: 88 221 MNNDX3 DEY

F8CA: DO F2 222 BNE “NNDX1

F8CC: 60 223 RTS

F8CD: FF FF FF 224 DFB $FF,SFF,SFF

F8DO0: 20 82 F8 225 INSTDSP JSR INSD31 GEN FMT, LEN BYTES
F8D3: 48 226 PHA SAVE MNEMONIC TABLE INDEX
F8D4: Bl 3A 227 PRNTOP LDA (PCL),Y

F8D6: 20 DA FD 228 JSR PRBYTE

FgD9: A2 01 229 LDX #$01 PRINT 2 BLANKS

F8DB: 20 4A F9 230 PRNTBL JSR PRBL2

F8DE: C4 2F 231 CPY LENGTH PRINT INST (1l-3 BYTES)
F8EO: C8 232 INY IN A 12 CHR FIELD
F3E1l: 90 F1 233 BCC PRNTOP

FB8E3: A2 03 234 LDX #$03 CHAR COUNT FOR MNEMONIC PRINT
FBE5: CO0 04 235 CPY #$04

FBE7: 90 F2 236 BCC PRNTBL

FBE9: 68 237 PLA RECOVER MNEMONIC INDEX
F8EA: A3 238 TAY

FBEB: BY CO FY 239 LDA MNEML,Y

FBEE: 85 2C 240 STA LMNEM FETCH 3-CHAR MNEMONIC
F8F0: B9 ul FA 241 LDA MNEMR, Y (PACKED IN 2-BYTES)
FB8F3: 85 2D 242 STA RMNEM

F8F5: AY Ul 243 PRMNI LDA #S$00

F8F7: A0 U5 244 LDY #S05

F8E9: U6 2D 245 PRMN2 ASL RMNEM SHIFT 5 BITS CF

FJFB: 26 2C 246 ROL LMNEM CHARACTER INTC A
F8FD: 2A 247 ROL A (CLEARS CARRY)
F8FE: 88 248 DEY

F8FF: DO F8 249 BNE PRMN2

F901% 69 BF 250 ADC  #S$SBF ADD "?" OFFSET

F903: 20 ED FD 251 JSR COUT OUTPUT A CHAR OF MNEX
F906: CA 252 DEX

F907: DU EC 253 BNE PRMNI

F909: 20 48 F9 254 JSR PRBLNK OUTPUT 3 BLANKS

F90C: A4 2F 255 LDY LENGTH

FOUE: A2 06 256 LDX #3506 CNT FOR 6 FORMAT BITS
F910: Eu 03 257 PRADR1 CPX #SU3

F912: PO 1C 258 BEQ PRALRS IF X=3 THEN ADDR.
F914: 06 2E 259 PRADR2 ASL FORMAT

F916: 90 VE 260 BCC PRADR3

F918: BD B3 F¢ '61 LDA CHAR1-1,X

F91B: 20 ED FD 262 JSR COCT

F9lE: BD BY F9 263 LDA CHAR2-1,X

Fg21: FO 03 264 BEQ PRADR3

FS523: 20 ED FD 265 JSR CouT

F926: CA 266 PRADR3 DEX

F927: DU E7 267 BNE PRADR1

F929: 60 268 RTS

F92A: 88 269 PRADR4 DEY

F923: 30 E7 27U BMI PRADR2

F92D: 20 DA FD 271 JSR PRBYTE

F930: A5 2E 272 PRADRS LCA FORMAT

F932: C9 EB 273 CMP 4SES8 HANDLE REL ADR MODE
F934: Bl 3A 274 LDA (PCL),Y SPECIAL (PRINT TARGET,
F936: 90 F2 275 BCC PRADR4 NOT OFFSET)

F933: 20 56 F9 276 RELADR JSR  PCADJ3

F93B: AA 277 TAX PCL,PCH+0OFFSET+1 TO A,Y
F93C: EB8 278 INX

F93D: DU 01 279 3NE PRNTYX +1 TO Y,X

F93F: C8 280 INY

F940: 98 281 PRNTYX TYA

F941: 20 DA FD 282 PRNTAX JSR PRBYTE OUTPUT TARGET ADR
F944: 8A 233 PRNTX TXA OF BRANCH AND RETURN
F945: 4C DA FD 284 JMP PRBYTE

F948: A2 u3 285 PRBLNK LDX #S03 BLANK COUNT

F94A: A9 AOQ 286 PRBL2 LDA  #SA0 LOAD A SPACE

F94C: 20 ED FD 287 PRBL3 JSR cooUT OUTPUT A BLANK

F94F: CA 288 DEX

158



F950: DU F8 289 BNE PRBL2 LOOP UNTIL COUNT=0

F952: 60 290 RTS
F953: 38 291 PCADJ SEC 0=1-BYTE, 1=2-BYTE,
F954: A5 2F 292 PCADJ2 LDA LENGTH 2=3-BYTE
F956: A4 38 293 PCADJ3 LDY PCH
F958: AA 294 TAX TEST DISPLACEMENT SIGN
F959: 10 01 295 BPL PCADJ4 (FOR REL BRANCH)
F95B: 88 296 DEY EXTEND NEG BY DECR PCH
F95C: 65 3A 297 PCADJ4 ADC PCL
F95E: 90 01 258 BCC RTS2 PCL+LENGTH (OR DISPL)+l TO A
F960: C& 299 INY CARRY INTC Y (PCH)
F961l: &0 300 RTS2 RTS
301 * FMT1 BYTES: XXXXXXY 0 INSTRS
302 * IF Y=0 THEN LEFT HALF BYTE
303 * IF Y=1 THEN RIGHT HALF BYTE
304 * (X=INDEX)
F962: 04 20 54 )
FY65: 30 0D 305 FMT1 DFB $04,$20,$54,$
F967: 380 04 9V
F96A: 03 22 306 DFB $80,$04,590,$
F96C: 54 33 UD
F96F: 80 U4 307 DFB $54,$33,$0D,$%
FY971: 90 04 20
F974: 54 33 308 DFB  $90,504,$20,$
F976: UD 80 04
F979: 90 u4 309 DFB S0D,$80,$04,3
F978: 20 54 3B
F97E: (C 80 310 DFB $20,$54,$38,$
F980: U4 90 00
F983: 22 44 311 DFB $04,$90,$00,$
F985: 33 0D C8
F9386: 44 Uu 312 DFB $33,$0D,$C8,$%
F98A: 11 22 44
F98D: 33 0D 313 DFB $11,$22,544,%
FY8F: C8 44 A9
F992: ul 22 314 DFB $C38,$44,SA9,$
F994: 44 33 0O
F997: 80 04 315 DFB  $44,$33,50D,$
F999: 90 01 22
F99C: 44 33 316 DFB $90,$01,522,$
F99E: (D 80 04
F9Al: 90 317 DFB $0D,$80,$04,$
F9A2: 26 31 87
FYAS5: 9A 318 DFB  $26,$31,$87,$ZZXXXY01l INSTR'S
F9A6: 00 319 FMT2 DFB $00 ERR
F9A7: 21 320 DFB  $21 IMM
FY9A8: 81 321 DFB $81 Z-PAGE
F9A9: 82 322 DFB $82 ABS
F9AA: 00 323 DFB  $00 IMPLIED
F9AB: 00 324 DFB  $00 ACCUMULATOR
F9AC: 59 325 DFB  $59 (ZPAG, X)
F9AD: 4D 326 DFB  $S4D (ZPAG) , Y
F9AE: 91 327 DFB §91 ZPAG, X
F9AF: 92 328 DFB 592 ABS, X
F9BO: 86 329 DFB $86 ABS,Y
F9Bl: 4A 330 DFB  $4A (ABS)
F9B2: 85 331 DFB $85 ZPAG, Y
F9B3: 9D 332 DFB  $9D RELATIVE
F9B4: AC AY AC
F987: A3 As A4 333 CHARI ASC  ",), #(S"
F9BA: D9 U0 D3
F9BD: A4 A4 0U 334 CHAR2 DFB  $DY,S$00,SD8,S
335 *CHAR2: Yyt 0SS, 0
336 * MNEML IS OF FORM:
337 0+ (A) XXXXX000
338 * (B) XXXYY100
339 * (C) 1XXX1010
340 * (D) XXXYYY10
341 * (E) XXXYYYO0l
342 * (X=INDEX)

F9C0: 1C 8A 1C
F9C3: 23 SD 8B 343 HMNEML DFB $1C,$8A,$1C,S
F9C6: 1B Al 9D

159



FSC9: 8A 1D 23 344 DFB  §$1B,S$Al,$9D,$
F9CC: 9D 388 1D

FYCF: Al U0 29 345 DFB $9D, $8B,$1D,S

F9D2: 19 AE 69

FYD5: A8 19 23 346 DFB  $19,$AE, $69,S

F9D8: 24 53 1B

F9DB: 23 24 53 347 DFB  $24,$53,51B,S

FODE: '19 Al 348 DFB  $19,$Al (&) FORMAT ABOVE
F9EO: 00 1A 5B

F9E3: 5B A5 6Y 349 DFB $00,$1A,$5B,S

FSE6: 24 24 350 DFB  $24,$24 (B) FORMAT

F9E8: AE AE A8

FO9EB: AD 29 0u 351 DFB  $AE, $AE,$A3,S

FSEE: 7C UU 352 DFB §7C,$00 (C) FCRMAT

F9F0: 15 9C 6D

FO9F3: 9C A5 69 353 DFB $15,$9C,$6D,S

F9Fo: 29 53 ' 354 DFB  $29,553 (D) FORMAT

F9F8: 84 13 34

F9FB: 11 A5 69 355 DFB $84,$13,$34,S$

F9FE: 23 A0 356 DFB  $23, 3540 (E) FORMAT

FAQO: D8 62 5A

FAO3: 48 26 62 357 MNEMR DFB $D8,$62,$5A,S

FAO6: 94 88 54

FAC9: 44 C8 54 358 DFB $94,$88,$54,$

FAUC: 68 44 EB

FAQOF: 94 00 B4 359 DFB $68,$44,$EG,S

FAl2: 08 384 74

FAlS5: B4 28 6E 360 DFB $03,$84,874,S

FAld: 74 F4 CC

FAlB: 4A 72 F2 361 DFB $74,$F4,SCC,$

FALE: A4 82 362 DFB  $A4,$8A (A) FORMAT

FA20: G0 aA A2

FA23: A2 74 74 363 DFB $00,$AA,$A2,$

FA26: 74 72 364 DFB §$74,$872 (B) FORMAT

FA28: 44 68 B2

FA2B: 32 B2 JU 365 DFB $44,$68,$B2,S

FA2E: 22 00 366 DFB  $22,$00 (C) FORMAT

FA30: 1A 1A 26

FA33: 26 72 72 367 DFB  $1A,S$1A,$26,$

FA35: 88 C8 368 DFB  $88,$C8 (D) FORMAT

FA38: C4 CA 26

FA3B: 43 44 44 369 DFB  $C4,$CA,$26,$

FA3E: A2 C8 370 DFB $A2,$C8 (E) FORMAT

FA40: FF FF FF 371 DFB SFF,S$FF,SFF

FA43: 20 D0 F8 372 STEP JSR INSTDSP DISASSEMBLE ONE INST
FAd46: 68 373 PLA AT (PCL,H)
FA47: 85 2C 374 STA RTNL ADJUST TC USER
FA49: 68 375 PLA STACK. SAVE
FA4A: 85 2D 376 STA RTNH RTN ADR.

FA4C: A2 08 377 LDX #$08

FA4E: BLC 10 FB 378 XQINIT LDA INITBL-1,X INIT XEQ AREA
FA51: 95 3C 379 STA XQT,X

FA53: Ca 380 DEX

FA54: DO F8 38l BNE XQINIT

FA56: Al 3A 382 LDA (PCL,X) USER OPCODE BYTE
FA58: FO 42 383 BEQ XBRK SPECIAL IF BREAK
FASA: A4 2F 384 LDY LENGTH LEN FROM DISASSEMBLY
FASC: C9 20 385 CMP  #$20

FASE: FO 59 3886 BEQ XJSR HANDLE JSR, RTS, JME,
FA60: C9 60 387 CMP  #$60 JMEP ( ), RTI SPECIAL
FA62: Fu 45 388 BEQ XRTS

FAe4: C6 4C 389 CHMP #$4C

FA66: FO 5C 390 BEQ XJMP

FA63: C9 sC 391 CMP #$6C

FAoeA: FU 59 392 BEC XJMPAT

FAeC: C9 40 393 CMP  §$40

FAGE: FO 35 394 BEQ XRTI

FA70: 29 1F 395 AND #S1F

FA72: 49 14 398 ECR #$14

FA74: C9 04 397 CMP  #S04 COPY USER INST TO XEQ AREA
FA76: FO 02 398 BEQ XQ2 WITH TRA1LING NOPS
FA78: Bl 3A 399 XQ1 LDA (PCL),Y CHANGE REL BRANCH
FA7A: 99 3C 00 400 XxQ2 STA XQTNZ,Y DISP TO 4 FOR

160



FA7D: 88 401 DEY JMP TO BRANCH OR

FA7E: 10 F8 402 BPL XQl NERANCH FRCM XEQ.
FA80: 20 3F FF 403 JSR RESTCRE RESTCRE USER REG CONTENTS.
FA83: 4C 3C 00 404 JMP  XQTNZ XEQ USER OP FRCM RAM
FA86: 85 45 405 IRQ STA ACC (RETURN TO NBRANCH)
FAg3: 68 406 PLA

FA89: 48 407 PHA **IRQ HANDLER

FAgA: (A 408 ASL A

FAEB: 0A 409 ASL A

FABC: (A 410 ASL A

FA8D: 30 03 411 BMI BREAK TEST FOR BREAK

FABF: 6C FE 03 412 JMP  (IRQLOC) USER ROUTINE VECTOR IN RAM
FA92: 28 413 BREAK PLP

FA93: 20 4C FF 414 JSR SAV1 SAVE REG'S ON BREAK
FA96: 08 415 PLA INCLUDING PC

FA97: 85 3A 416 STA PCL

FA99: 638 417 PLA

FA9A: 85 3B 418 STA PCH

FA9C: 20 82 F8 419 XBRK JSR INSDS1 PRINT USER PC.

FA9F: 20 DA FA 420 JSR RGDSP1 AND REG'S

FAA2: 4C 65 FF 421 JMP MON GO TC MCNITOR

FAA5: 18 422 XRTI CLC

FAA6: 68 423 PLA SIMULATE RTI BY EXPECTING
FAA7: 85 48 424 STA STATUS STATUS FROM 3TACK, THEN RTS
FAA9: o8 425 XRTS PLA RTS SIMULATION

FAAA: 35 3A 426 STA PCL EXTRACT PC FRCM STACK
FAAC: o8 427 PLA AND UPDATE PC BY 1 (LEN=()
FAAD: 85 3B 428 PCINC2 STA PCH

FAAF: A5 2F 429 PCINC3 LDA LENGTH UPDATE PC BY LEN
FABl: 20 56 FY 430 JSR PCADJ3

FaB4: 34 3B 431 STY PCH

FAB6: 18 432 CLC

FAB7: 90 14 433 BCC NEWPCL

FABY9: 18 434 XJSR CLC

FABA: 20 54 F9 435 JSR PCALDJ2 UPDATE PC AND PUSH
FABD: AA 436 TAX ONTC STACK FOR
FABE: 98 437 TYA JSR SIMULATE

FABF: 48 438 PHA

FACO: 8A 439 TXA

FACl: 48 440 PHA

FAC2: A0 02 441 LDY #802

FAC4: 18 442 XJMP CLC

FAC5: Bl 3A 443 XJMPAT LDA (PCL),Y

FAC7: AA 444 TAX LOAD PC FOR JMP,
FAC8: 88 445 DEY (JMP) SIMULATE.
FAC9: Bl 3A 446 LDA (PCL),Y

FACB: 86 3B 447 STX PCH

FACD: 85 3A 448 NEWPCL STA PCL

FACF: BO F3 449 BCS XJMP

FADl: A5 2D 450 RTNJMP LDA RTNH

FAD3: 48 451 PHA

FAD4: A5 2C 452 LDA RTNL

FAD6: 48 453 PHA

FAD7: 20 8E FD 454 REGDSP JSR CROUT DISPLAY USER REG
FADA: A9 45 455 RGDSP1 LDA #ACC CONTENTS WITH
FADC: 85 40 456 STA A3L LABELS

FADE: A9 00 457 LDA #ACC/256

FAEO: 85 41 458 STA A3H

FAE2: A2 FB 459 LDX #SFB

FAE4: A9 AQ 460 RDSP1 LDA #SA0

FAE6: 20 ED FD 46l JSR COUT

FAE9: BD 1lE FA 462 LDA RTBL-$FB,X

FAEC: 20 ED FD 463 JSR COUT

FAEF: A9 BD 464 LDA #$BD

FAFl: 20 ED FD 465 JSR CoUT

FAF4: BS 4A 466 LDA ACC+5,X

FAF6: 20 DA FD 467 JSR PRBYTE

FAF9: EB8 468 INX

FAFA: 30 ES8 469 BMI RDSF1

FAFC: 60 470 RTS :

FAFD: 18 471 BRANCH CLC BRANCH TAKEN,

FAFE: A0 01 472 LDY #s01 ADD LEN+2 TO PC
FBOu: Bl 3A 473 LbA (PCL),Y

161



FBO2:
FBOS:
FBU7:
FBOS&:
FB0Y:
FBUB:
FBUE:
FBUF:
FB11l:
FB12:
FB13:
FBl6:
FB19:
FBlA:
FB1B:
FB1C:
FB1D:
FB1E:
FB21:
FB23:
FB24:
FB825:
FB28:
FB2A:
FB2B:
FB2D:
FB2E:
FB2F:
FB31l:
FB33%
FB36:
FB39Y:
FB3C:
FB3E:
FB40:
FB43:
FB46:
FB43:
FB4B:
FB4D:
FB4F:
FB51:
PBS3%
FB55:
FB57:
FB59:
FBSB:
FBSD:
FBoU:
FB63:
FB65:
FB67:
FB68:
FB6A:
FB6B:
FB6D:
FB6F:
FB71:
EB73:3
FB74:
FB76:
FB73:
FB79:
FB7A:
FB7B:
FB7D:
FBJTE:
FB8O:
FB81:
FB84:
FG86:
FB&8:
FB8A:

20
85
98
38
BU
20
38
BO
EA
EA
4C
4c
cl
D8
D9
CU
D3
AD
A
EA
EA
BD
10
C3
Do
88
60
A9
85
aD
AD
AD
A9
FO
AD
AD
20
AY
85
AS
85
AY
85
A9
85
A9
85
4C
20
AG
A5
4A
90
18
A2
B5
75
95
E8
Dy
A2
76
50
ca
10
38
Do
60
20
Al
06
26
26

56
3A

A2

4A

9E

uB
FD

70
00

64
U4

FB
E5
A4
1u
50

52

F9

FB
FA

Cu

co

Co
Co
Co

Cu
Cu
F8

Fe
FB

FB

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
540

NBRNCH

INITBL

RTBL

PREAD

PREAD2

RTS 2D
INIT

SETTXT

SETGR

SETWND

TABV

MULPM
MUL
MUL2

MUL3

MUL4
MULS

DIVPM
DIV
DIV2

JSR
STA
TYA
SEC
BCS
JSR
SEC
BCS
NOP
NOP
JMP
JMP
DFB
DFB
DFB
DFB
DFB
LDA
LDY
NOP
NOP
LDA
BPL
INY
BNE
DEY
RTS
LDA
STA
LDA
LDA
LDA
LDA
BEQ
LDA
LDA
JSR
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JMP
JSR
LDY
LDA
LSR
BCC
CLC
LDX
LDA
ADC
STA
INX
3NE
LDX
DFB
DFB
DEX
BPL
DEY
BNE
RTS
JSR
LDY
ASL
ROL
ROL

PCADJ3
PCL

PCINC2
SAVE

PCINC3

NBRNCH
BRANCH
sC1
$D8§
$D9
$DO
$D3
PTRIG
#$00

PADDLO, X
RTS2D

PREAD?2

#3500
STATUS
LORES
LOWSCR
TXTSET
#50U
SETWND
TXTCLR
MIXSET
CLRTCP
#$14
WNDTOP
#500
WNDLFT
#528
WNDWDTH
#5138
WNDETM
#$17
cv
VTAB
MD1
#$10
ACL

A

MUL4

#SFE
XTNDL+2,X
AUXL+2,X
XTNDL+2,X

MUL3
#$03
#5786
#$50

MULS
MUL2
MD1
#810
ACL

ACH
XTNDL

162

NORMAL RETURN AFTER
XEQ USER OF
GO UPDATE EC

DUMMY FILL FOR
XEC AREA

TRIGGER PADDLES
INIT COUNT
COMPENSATE FOR 1ST COUNT

COUNT Y-REG EVERY
12 USEC

EXIT AT 255 MAX

CLR STATUS FOR DEBUG
SOFTWARE

INIT VIDEO MODE
SET FOR TEXT MODE
FULL SCREEN WINDOW

SET FOR GRAPHICS MOLE
LOWER 4 LINES AS
TEXT WINDCW

SET FCR 40 COL WINDOW
TOP IN A-REG,
BTTM AT LINE 24

VTAB TO ROW 23
VTABS TC ROW IN A-REG

ABS VAL OF AC AUX
INDEX FOR 16 BITS
ACX * AUX + XTND
TO AC, XTND
IF NO CARRY,
NO PARTIAL PROD.

ADD MPLCND (AUX)

TO PARTIAL PROD
(XTND) .

ABS VAL OF AC, AUX.
INDEX FOR 16 BITS

XTND/AUX



FB8C:
FB3E:
FBSF:
FB91:
FBY3:
FB94:
FBY9o:
FBY8:
FBYA:
FBYC:
FBYE:
FBAOU:
FBAl:
FBA3:
FBA4:
FBAG:
FBAB:
FBAA:
FBAD:
FBAF:
FBB1:
FBB3:
FBB4:
FBBS:
FBB7:
FBBY:
FBBA:
FBBC:
FBBE:
FBCU:
FBC1:
FBC2:
FBC3:
FBC5:
FBC7:
FBC9:
FBCA:
FBCC:
FBCE:
FBDO:
FBD2:
FBD3:
FBD4:
FBD6:
FBD8:
FBDY:
FBDB:
FBDD:
FBDF:
FBE2:
FBE4:
FBE6:
FBES:
FBEC:
FBED:
FBEF:
FBFO:
FBF2:

FBF&:
FBFA:
FBFC:
FBFD:
FBFF:
FCUl:
FC02:
FCu4:
FC06:
FCO03:
FCUA:
FCOC:
FCOE:

26
38
aAS
E5
AA
aAs
ES
90
86
85
E6
33
DU
6U
AU
84
A2
20
a2
B5
10
38
98

‘F5

95
98
F5
95
E6
60
48
4A
23
09
85
68
29
90
69
85
0Aa
VRN
05
85
60
Cc9
DO
A9
20
A0
A9
20
AD
]
Du
60
A4
91
Eb
A5
C5
BO
60
€Y
BO
Ag
10
Cc3
Fo
c9
FO
c9
DU

53

52
54

53
55
o
52
53
50

E3

vl
2F
54
AF
50
Ul
oD

00
QU

Ul
0l
2F

03
29

18
u2
1F
23

28
28

87
12
40
A8
co
uC
A8
30

F5

24
28
24
24
21
66

a0
EF

EC
8D
SA
A
5a
38
c9

FB

FC

EC
co

547
5438
549
550
551
552
553
554
555
556
557
5538
559
569
561
562
563
564
565
566
567
568
569

613
614
616
617
618
619

DIV3

MD1

MD2

MD3

MDRTS
BASCALC

BSCLC2

BELL1

BELL2

KTS 2B
STOADV

ADVANCE

RTS 3
vibDcur

ROL
SEC
LDA
SBC
TAX
LDA
sB8C
BCC
5TX
STA
INC
DEY
BNE
RTS
LDY
STY
LDX
JSR
LDX
LDA
BPL
SEC
TYA
SBC
STA
TYA
SBC
STA
INC
RTS
PHA
LSR
AND
ORA
STA
PLA
AND
BCC
ADC
STA
ASL
ASL
ORA
STA
RTS
CMP
BNE
LDA
JSR
LDY
LDA
JSR
LDA
DEY
BNE
RTS
LDY
STA
INC
LDA
CMP
BCS
RTS
CMP
BCS
TAY
3PL
cHup
BEQ
CMP
BEQ
CMP
BNE

XTNDH

XTNDL
AUXL

XTNDH
AUXH
DIV3
XTNDL
XTNDH
ACL

DIV2

#$00
SIGN
#AUXL
MD2
#ACL
LOCl,X
MDRTS

LOCO, X
LOCO, X

LOC1,X
LOC1,X
SIGN

A
#$03°
#504
BASH

#5518
BSCLC2
#S7F
BASL
A

A
BASL
BASL

#587
RTS2B
#540
WAIT
#$C0
#$0C
WAIT
SPKR

BELL2

CcH
(BASL) , Y
cH
CH
WNDWDTH
CR

#9840
STOADV

STOADV

#$8D
CR

163

TO AC.

MCD TO XTND.

ABS VAL OF AC, AUX
WITH RESULT SIGN
IN LSB CF SIGN.

X SPECIFIES AC OR AUX

COMPL SPECIFIED REG
IF NEG.

CALC BASE ADR IN BASL,H
FOR GIVEN LINE NO.
0<=LINE NO.<=$17

ARG=000ABCDE, GENERATE
BASH=000001CD
AND
BASL=EABAB(O0O

BELL CHAR? (CNTRL-G)
NO, RETURN
DELAY .01 SECCNDS

TOGGLE SPEAKER AT
1 KHZ FOR .l SEC.

CURSER H INDEX TO Y-REG
STOR CHAR IN LINE
INCREMENT CURSER H INDEX
(MOVE RIGHT)
3EYOND WINDOW WIDTH?
YES CR TO NEXT LINE
NO, RETURN
CONTROL CHAR?
NO,0UTPUT IT.
INVERSE VIDEO?
YES, OUTPUT IT.
CR?
YES.
LINE FEED?
IF SO, DO IT.
BACK SPACE? (CNTRL-H)
NO, CHECK FOR BELL.



FCl0:
BC12:
FCl4:
FCl6:
FCl8:
FCI1A:
FC1C:
FClE:
FC20:
FC22:
FC24:
FC27:
FC2y:
FC2B:
FC2C:
FC2E:
FE30:
FC32:
FC34:
PC36:
FC33:
FC3A:
FC3C
FC3E:
FC40:
FC42:
FC44:
FC46:
FC47:
FC4A:
FC4D:
FC4F:
FC50:
PC52:
FC54:
FC556:
FC58:
FC5A:
FECSC:
FCSE
FCo0
FC62
FC64
FC66:
FCo38:
FCohA:
FCoC:
FC6E:
EC70:
ECT
BC73:
FC76:
FC73:
FC7A:
FC7C:
ECIE:
FC3u:
FC81:
FC82:
FC84:
FC36:
FCy38:
FC89:
FCaC:
FCBE:
FCYO0:
Col:
FC93:
FE95:
FC97:
FC9A:
FCICl:
FCYE:

Cé
19

&5

Cs

20
BU
A4
AY

24
E8
21
24
24
22
25
UB
25
25
Cl
20
28

Cco
28
FD
co
DA
FD
2C
DE
FD
5C
ES9
24
25

24
9E
00

[X¢]
23
FO
CA
22
25
Juo
24
E4
V)
24
25
25
23

25
22

24
28
2A
29
2B
21

01
23
0D

24
2A

F9
El
uu
SE
86
24
a0

FB

EC
FC

EC

FC

FC

620
621
622
623
624
625
626

630

638

BS

up

VTAB
VTAaB2Z

RTS 4
ESC1

CLRECP

CLEOP1

HOME

CR

LF

SCROLL

SCRL1

SCRL2

SCRL3

CLREOL
CLEOLZ

CH
RTS3
WNDWDTH

cv
BASCALC
WNDLFT
BASL

#$C0
HOME
#SFD
ADVANCE
BS
#SFD
LF

gp
#$FD
CLRECL
RTS4
CH

cv

VTABZ
CLEOLZ
#$00

#$00
WNDBTM
CLEOP1
VTAB
WNDTCP

Ccv
WNDBTM
VTAEZ
Ccv
WNDTOP

VTABZ
BASL
B8AS2L
BASH
BAS2H
WNDWDTH

F501
WNDBTM
SCRL3

VTAB2Z
(BASL) ,Y
(BAS2L),Y

SCRL2
SCRL1
#500
CLEOLZ
VTAB
CH
#$A0

164

DECREMENT CURSER H INDEX
IF POS, OK. ELSE MOVE UP
SET CH TO WNDWDTH-1

(RIGHTMCST SCREEN POS)
CURSER V INDEX

IF TOP LINE THEN RETURN
DECR CURSER V-INDEX

GET CURSER V-INDEX
GENERATE BASE ADDR

ADD WINDOW LEFT INDEX
TO BASL

ESC?

IF SO, DO HOME AND CLEAR

ESC-A OR 8 CHECK
A, ADVANCE
B8, BACKSPACE

ESC-C OR D CHECK
C, DOWN
b, GO Up

ESC-E OR F CHECK
E, CLEAR TC END CF LINE
NOT F, RETURN

CURSOR H TO Y INDEX

CURSCR V TO A-REGISTER

SAVE CURRENT LINE ON STK

CALC BASE ADDRESS

CLEAR TO EOL, SET CARRY

CLEAK FROM H INDEX=0 FOR REST

INCREMENT CURRENT LINE

(CARRY IS SET)

DONE TO BOTTCM OF . INDOW?
NO, KEEP CLEARING LINES
YES, TAB TO CURRENT LINE

INIT CURSOR V
AND H-INDICES

THEN CLEAR TG END OF PAGE

CURSCR TO LEFT CF INDEX
(RET CURSOR H=0)
INCR CURSOR V(DCWN 1 LINE)

OFF SCREEN?

NO, SET BASE ADDR
DECR CURSOR V(BACK TO BOTTOM)
START AT TOP OF SCRL WNDW

GENERATE BASE ADDRESS
COPY BASL,H
TO BAS2L,H

INIT Y TO RIGHTMOST INDEX
OF SCROLLING WINDOW

INCR LINE NUMBER
DONE?
YES, FINISH

FORM BASL,H (BASE ADDR)
MOVE A CHR UP CN LINE

NEXT CHAR OF LINE

NEXT LINE

CLEAK BOTTOM LINE

GET BASE ADDR FOR BOTTOM LINE
CARRY IS SET

CURSCR H INDEX



FCAuU: 91 28 093 CLEOL2 STA (BASL),Y STORE BLANKS FROM 'HERE'

FCA2: C8 694 INY TO END OF LINES (WNDWDTH)
FCA3: C4 21 695 CPY WNDWDTH

FCAS: 90 F9 596 BCC CLEOL2

FCA7: 66U 697 RTS

FCAB: 3 698 WAIT SEC

FCAS9: 4¢ 699 WAIT2 PHA

FCAA: E9 U1 700 WAIT3 SBC #s01

FCAC: Du FC 701 BNE WAIT3 1.0204 USEC

FCAE: b3 702 PLA (13+2712*%A+512*A*4)
FCAF: E9 01 703 SBC #$01

FCB2l: DO F6 704 BNE WAIT2

FCB3: 60 705 RTS

FCB4: Eo6 42 706 NXTA4 INC A4L INCR 2-BYTE A4
FCB6: DO 02 707 BNE NXTAl AND Al

FCB8: E6 43 708 INC AdH

FCBA: A5 3C 709 NXTAl LDA AlL INCR 2-BYTE Al.
FCBC: C5 3E 710 CMP  A2L

FCBE: A5 3D 711 LDA AlH AND COMPARE TO A2
FCCu: E5 3F 712 SBC A2H

FCC2: E6 3C 713 INC AlL {(CARRY SET IF >=
CC4: Du 02 714 BNE RTS4B

FCC6: E6 3D 715 INC AlH

FCC38: 60 716 KRTS4B RTS

FCC9: Au 4B 717 HEADR LDY #354B WRITE A*256 'LONG 1'
FCCB: 2u DB FC 718 JSR ZERDLY HALF CYCLES

FCCE: DU F3 719 BNE HEADR (650 USEC EACH )
FCDO: oY FE 720 ADC #SFE

FCD2: B0 F5 721 BCS HEADR THEN A 'SHORT 0'
FCD4: A0 21 722 LDY #$21 (400 USEC)

FCD6: 20 DB FC 723 WRBIT JSR ZERDLY WRITE TWO HALF CYCLES
FCD9: C8 724 INY OF 250 USEC ('0")
FCDA: C8 7125 INY OR 500 USEC ('0'
FCCB: 88 726 ZERDLY DEY

FCDC: DO FD 727 BNE ZERDLY

FCDE: 90 05 728 BCC WRTAPE Y IS COUNT FOR
FCEU: AQ 32 729 LDY 4832 TIMING LOOP
FCE2: 88 730 ONEDLY DEY

FCE3: Dv FD 731 BNE ONEDLY

FCE5: AC 20 CU 732 WRTAPE LDY TAPEOUT

FCEs: A0 2C 733 LDY #$2C

FCEA: CA 734 DEX

FCEB: 60 735 RTS

FCEC: A2 U8 736 RDBYTE LDX #$08 8 BITS TO READ
FCEE: 48 737 RDBYT2 PHA READ TWO TRANSITIONS
FCEF: 20 FA FC 738 JSR RD2BIT (FIND EDGE)

FCF2: 68 739 PLA

FCF3: 2A 740 ROL A NEXT BIT

FCF4: AU 3A 741 LDY #$3A COUNT FOR SAMPLES
FCF6: CA 742 DEX

FCF7: DO F5 743 BNE RDBYT2

FCF3: 60 744 RTS

FCFA: 20 FD FC 745 RD2BIT JSR RDBIT

FCFD: &8 746 RDBIT DEY DECR Y UNTIL

FCFE: AD 60 CO 747 LDA TAPEIN TAPE TRANSITICN
FDOl: 45 2F 748 ECR LASTIN

FD0O3: 1lu F8 749 BPL RDBIT

FD05: 45 2F 750 EOR LASTIN

FDU7: 85 2F 751 STA LASTIN

FD0Y9: CU 8v 752 CPY #$80 SET CARRY ON Y-REG.
FDUB: 60 753 RTS

FDOC: A4 24 754 RDKEY LDY CH

FDOE: Bl 28 755 LDA (BASL),Y SET SCREEN TO FLASH
FD10: 48 756 PHA

FDll: 29 IF 757 AND  #$3F

FD13: 09 40 758 ORA #8540

FD15: 91 26 759 STA (BASL),Y

FDl7: o8 760 PLA

FD1g: oC 38 0V 7ol JMF  (KSWL) GO TO USEK KEY-IN
FD1B: E6 4E 762 KEYIN INC RNDL

FDID: Ly 02 763 BNE KEYIN2 INCR RND NUMBER
FD1F: Eo 4F 764 INC RNDH

FD21: 2C uUu CU 765 KEYIN2 BIT KBD KEY DOWN?

165



FDz4:
FC26:
FD28:
FD2B:
FD2E:
FD2F:
FD32:
FD353
FD33:
FD3A:
FD3C:
FD3D:
FD3E 3
FD40:
FD42:
FD44:
FC47:
FD4A:
FD4B:
FC4D:

FD52:
FD54:
FD56:
FD53:
FC5A:
FD5C:
FDSF:
FD60:
FD62:
FD64:
FC67:
FDB8A:
FD6C:
FD6F:
FD71:
FD72:
FD74:
FD75:
FD73:
FD7A:
PL%5Cs
FD7E:
FD&0:
FD82:
FDy4:
FDg7:
FDEY:
FDbB3:
FDSE:
FDY0:
FD92Z:
FD94:
FD9%:
FDY99:
FD3C:
FDYE:
FDACG:
FDA3:
FDA5:
FDA7:
FDAY:
FDAB:
FDAD:
FDAF:
FDB1:
FDB3:
FDB6:
FDB8:
FDBB:
FDBD:
FDCO:

10
91
AD
2C
60
20
20
20
€9
FU
60
A5
48
A9
85
BD
20
68
85
BD
(oF°]
Fo
C9
FO
EC
90
20
E3
DU
A9
20
20
A5
20
A2
8A
FO
CA
20
cY
oo
Bl
C39
90
29
9D
c9
DO
20
A9
lli}
Ad
Ab
20
20
AQ
AY
4C
AS
09
85
AS
85
AS
29
DY
20
A9
20
Bl
20
20

F5
20
00
10

uC
2C
acC
9B
F3

32

EF
32
0V
ED

32
00
38
1D
98
VA
F8
U3
3a

13
DC
ED

33
ED
Ul

35
9’5

u2

EOQ
02
DF
00
3D
B2
9C

5B
3D

C
8E
40
0o
AD
ED

~
o

07

3D
3F
3C
97
03
92
A0
ED
3C
DA
BA

Cu
Co

FD
EC
FD

02
FD

02

FF

FD
FD

FD

FD

02

FD
P8

FD

FD
FD

FD
FC

766
167
768
769
770
771
112
713
774
715
776
777
778
779

813
814
815
616
817
818
819
820
821
822
823

825
826
827
828
829
830
831
832
833
834
835
836
837

ESC

RDCHAR

NOTCR

NOTCR1
CANCEL
GETLNZ
GETLN

BCKSPC

NXTCHAR

CAPTST

ADDINP

CROUT

PRAL

PRYX2

XAM3

MCD8CHK

XAM
DATACUT

KEYIN
(BASL) , Y
KBD
KBDSTRB

RDKEY
ESC1
RDKEY
#$98B
ESC

INVFLG

#SFF
INVFLG
IN,X
cour

INVFLG
IN,X
#9838
BCKSPC
#$98
CANCEL
#SF8
NOTCR1
BELL

NXTCHAR
#SDC
cour
CROUT
PROMPT
coor
#501

GETLNZ

RDCHAR
#PICK
CAPTST
(BASL),Y
£SEG
ADDINP
#SDF
IN, X
458D
NOTCR
CLREOL
#$8D
couT
AlH
AlL
CRCUT
PRNTYX
4500
#SAD
CouT
AlL
43507
A2L
AlH
A2H
AlL
#S07
CATAQOUT
PRA1
#SA0
couT
(ALL) , Y
PRBYTE
NXTA1l

166

Locp
REPLACE FLASHING SCREEN
GET KEYCODE
CLR KEY STRCBE
GET KEYCODE
HANDLE ESC FUNC.
READ KEY
ESC?
YES, CON'T RETURN

ECHO USER LINE
NON INVERSE

CHECK FOR EDIT KEYS
B5, CTRL-X.
MARGIN?

YES, SOUND BELL
ADVANCE INPUT INDEX

BACKSLASH AFTER CANCELLED
OUTPUT CR
OUTPUT PERCHUPT CHAR

INIT INPUT INDEX
WILL BACKSPACE TO U

USE SCREEN CHAR
FOR CTRL-U

CONVERT TO CAPS

ADD TO INPUT BUF

CLR TO EOL IF CR

PRINT CR,Al IN HEX

PRINT '-'

SET TO FINISH AT
¥0D 38=7

OUTPUT BLANK

OUTPUT BYTE IN HEX

LIN



FDC3:
FDCS:
FOC6:
FDC7:
FDCY:
FDCA:
FDCB:
FDCD:
FDCF:
FDD1:
FDD3:
FDD4:
FDDb:
FDDY:
FDDA:
FDODB:
FDDC:
FCDD:
FDDE:
FCDF':
FDE2:
FDE3:
FDES:
FDE7:
EDEY:
FDEB:
FDED:
FDFO:
FOF2:
FDF4:
FDF6:
FDF3:
FDF9:
FDFC:
FCFD:
FDFF:
FEUO:
FEO2:
FEU4:
FEU5:
FEU7:
FE09:
FE(B:
FEOD:
FEOF:
FE1ll:
FE13:
EELS
FE17:
FE18:
FE1lA:
FE1D:
FE1F:
FE20:
FE22:
FE 24:
FE26:
FE23:
FE29:
FE2B:
FE2C:
FE2E:
FE30:
FE33:
FE 354
FE36:
FE238:
FE3A:
FE3C:
FE3PF:
FE41:
FE44:
FE46:

90
60
4A
90
4A
4A
A5
90
49
65
438
AY
20
68
48
4A
4A
4A
4A
20
68
29
09
Cc9
90
69
6C
o)
90
25
84
48
24
08
A4
60
Cso
FoO
CA
DO
c9
Co
85
A5
91
E6
Lo
Eo
60
A4
B9
85
60
A2
B5
95
95
Ca
10
60
Bl
91
20
90
60
Bl
D1l
FO
20
Bl
20
A9
20

ES

EA

3E
02
FF

<

BD
ED

FD

FD

FB

01

FC

FD

FD

895
396
897
898
899
900
901
902
903
904
905
906
907
308
909
910

RTS4C
XAMPM

ADD

PRBYTE

PRHEX
PRHEXZ

ccor
couTl

couTz

BL1

3LANK

STOR

RTS5
SETMODE

SETMDZ

LT
LT2

MOVE

VEY

BCC
RTS
LSR
BCC
LSR
LSR
LDA
BCC
EOR
ADC
PHA
LDA
JSR
PLA
PHA
LSR
LSR
LSR
LSR
JSR
PLA
AND
CRA
CcMP
BCC
ADC
Jup
cHP
8CC
AND
STY
PHA
JSR
PLA
LDY
RTS
DEC
BEQ
DEX
BNE
CcMP
BNE
STA
LDA
3TA
INC
BNE
INC
RTS
LDY
LDA
STA
RTS
LDX
LDA
STA
STA
DEX
BPL
RTS
LDA
STA
JSR
BCC
RTS
LDA
CcMP
BEQ
JSR
LDA
JSR
LDA
JSK

MODBCHK

A
XAM
A

A
A2L
ADD
#SFF
AlL

#$BD
cour

A
A
A
A
PRHEXZ
#SOF
#$B0
#$SBA
cour
#5006
(CSWL)
#SAU
courz
INVFLG
YSAV1

VIDOUT
YSAV1

YSAV
XAM8

SETMDZ
#$SBA
XAMEM
MODE
azL
(A3L), Y
A3L
RTSS
A3H

YSAV
IN-1,Y
MODE

#501

A2L,X
A4L, X
ASL,X

LT2

(AlL),Y
(A4L) , Y
NXTA4
MOVE

(AlL),Y
(A4L),Y
VF YOK
PRA1
(AlL) , Y
PRBYTE
#SAU
couor

167

CHECK IF TIME TO,
PRINT ADDR

DETERMINE IF MCN
MODE IS XAM
ADD, OR SUB

SUB: FORM 2'S CCMPLEMENT

PRINT '=', THEN RESULT

PRINT BYTE AS 2 HEX
DIGITS, DESTKROYS A-REG

PRINT HEX DIG IN A-REG
LS8'S

VECTOR TO USER CUTPUT RCUTINE

DON'T OUTPUT CTRL'S INVERSE
MASK WITH INVERSE FLAG
SAV Y-REG
SAV A-REG
CUTPUT A-REG AS ASCII
RESTCRE A-REG

AND Y-REG

THEN RETURN

BLANK TO IMON
AFTER BLANK
CATA STORE MODE?
NO, XAM, ADD OR SUB
KEEP IN STORE MCLCE

STORE AS LOW BYTE AS (A3)
INCR A2, RETURN

SAVE CONVERTED ':', '+',
'-', '.' AS MODE.

COPY A2 (2 BYTES) TO
A4 AND AS

MOVE (Al TO A2) TO
(A4)

VERIFY (Al TO A2) WITH
(A4)



FE49: A9 A8 91l LDA #$SA3

FE4B: 20 ED FD 912 JSR COUT

FE4E: Bl 42 913 LDA (Ad4L),Y

FES0: 20 DA FD 914 JSR PRBYTE

FES3: A9 Ay 915 LDA  #$A9

FES5: 20 BD FD 916 JSR COUT

FES8: 20 34 FC 917 VFYOK JSR NXTA4

FESB: 90 DY 918 BCC VFY

FESD: 6 919 RTS

FESE: 20 75 FE 920 LIST JSR AlPC MOVE Al (2 BYTES) TO
FE6l: A9 14 921 LDA 3514 PC IF SPBEC'D ANC
FE63: 4& Y22 LIST2 PHA DISSEMBLE 20 INSTRS
FE64: 2u DO F8 923 JSR INSTDSP

FE67: 20 53 F3 924 JSR ECADJ ADJUST PC EACH INSTR
FE6A: 45 3A 925 STA ECL

FE6C: &4 38 925 STY PCH

FE6E: 68 927 PLA

FE6F: 38 928 SEC

FE70: E9 vl 929 SBC  $501 NEXT OF 20 INSTRS
FE72: DU EF 930 BNE LIST2

FE74: 60 931 RTS

FE75: 8A 932 alpcC TXA IF USER SPEC'D ADR
FE76: FO 07 933 B8EQ ALPCRTS COPY FRGH Al TO PC
FE78: B5 3C 534 AlPCLE LDA AlL,X

FE7A: 95 3A 935 STA PCL,X

FE7C: CA 93 DEX

FE7D: lu F9 937 BFL ALPCLP

FE7F: 60 938 ALPCRTS  RTS

FEBO: AQ 3F 339 SETINV LDY $$3F SET FOR INVERSE VID
FE82: DO 02 940 BNE SETIFLG vIa courl

FE84: A0 FF 941 SETNORM LDY #SFF SET FOR NORMAL VID
FES6: 84 32 942 SETIFLG  STY INVFLG

FEB8: 60 943 RTS

FEB9: A9 00 944 SETKBD LDA 500 SIMULATE PORT #0 INPUT
FE8B: 85 3E 945 INPORT STA A2L SPECIFIED (KEYIN ROUTINE)
FESD: A2 38 946 INPRT LDX  #KSWL

FESF: A0 1B 947 LDY #KEYIN

FE9l: DO U8 948 BNE IOPRT

FE93: A9 00 949 SETVID LDA  #500 SIMULATE PORT #0 OUTPUT
FEY5: 85 3E Y50 OUTPORT  STA A2L SPECIFIED (COUT1 ROUTINE)
FE97: A2 36 951 OUTPRT LDX 3CSWL

FE99: A0 FO 952 LDY 4COUT1

FE9B: A5 3E 953 IOPRT LDA A2L SET RAM IN/OUT VECTORS
FEYD: 29 OF 954 AND  #SOF

FE9F: F0 06 955 BEQ I1OPRTI

FEAl: 09 CO 956 ORA  #IOADR/256

FEA3: AU 0y 957 LDY #500

FEAS: FU u2 958 BEQ IOPRT2

FEA7: A9 FD 959 IOPRT1 LDA #COUT1/256

FEAY: 94 00 960 IOPRT2 STY LOCU, X

FEAB: 95 Ul 951 STA LOCL,X

FEAD: 60 962 KTS

FEAE: EA 963 NOP

FEAF: EA 964 NOP

FEBO: 4C 00 EO 965 XBASIC JMP BASIC TO BASIC WITH SCRATCH
FEB3: 4C u3 EO 966 BASCONT  JMF BASIC2 CONTINUE BASIC

FEB6: 20 75 FE 967 GO JSR AlPC ADR TO PC IF SPEC'D
FEBS: 20 3F FF 968 JSR  RESTCRE RESTORE META REGS
FEBC: 6C 3A 00 969 JMP  (PCL) GO TO USER SUBR

FEBF: 4C D7 FA 970 REGZ JMP REGDSP TO REG DISPLAY

FEC2: C6 34 971 TRACE DEC YSAV

FEC4: 20 75 FE 372 STEPZ JSR  ALPC ADKR TO PC IF SPEC'D
FEC7: 4C 43 FA 973 JMP STEP TAKE ONE STEP

FECA: 4C F& 03 974 USR JMP USRADR TO USR SUBR AT USRADR
FECD: A9 40 975 WRITE LDA 540

FECF: 20 CY FC 976 JSR HEADR WRITE 10-SEC HEADER
FED2: A0 27 977 LDY #527

FED4: A2 00 978 WRlL LDX #$UU

FED6: 41 3C 979 EOR (AlL,X)

FED8: 438 980 PHA

FEDY: Al 3C 931 LDA (AlL, X)

168



FEDB: 20 ED FE 332 JSR WRBYTE

FEDE: 20 BA FC 983 JSR NXTAl

FEEl: Avu 1D 534 LDY #$1D

FEE3: 68 985 PLA

FEE4: 90 EE 86 BCC WR1

FEE6: AU 22 Y87 LDY #$22

FEE3: 2U ED FE 933 JSR WRBYTE

FEEB: FU 4D 989 BEQ BELL

FEED: A2 10 990 WRBYTE LDX #$10

FEEF: VA 991 WRBYT2Z2 ASL A

FEF0: 2U D6 FC 992 JSR WRBIT

FEF3: DO FA 993 BNE WRBYT2

FEF5: 60 994 RTS

FEF6: 20 J0 FE 995 CRMON JSR BL1 HANDLE CR AS BLANK
FEF9: 68 996 PLA THEN POP STACK

FEFA: 68 997 PLA AND RTN TO HMON

FEFB: D0 6C 998 BNE MONZ

FEFD: 20 FA FC 999 READ JSR RD2BIT FIND TAPEIN EDGE

FF0O0: AY 16 1u00 LDA #$16

FF02: 20 C9 FC 1001 JSK HEADR DELAY 3.5 SECCNLCS
FFU5: 85 2E 1002 STA CHEKSUM INIT CHXSUM=SFF

FFU7: 20 FA FC 1003 JSR  RD2BIT FIND TAPEIN EDGE

FFUA: AU 24 10u4 RD2 LDY #$24 LOOK FOR SYNC BIT
FFUC: 20 FD FC 1005 JSR RDBIT (SHORT 0)

FFOF: BO FS loué BCS RD2 LOOP UNTIL FOUND
FFll: 20 FD FC 1007 JSR  RDBIT SKIP SECOND SYNC H-CYCLE
FFl4: AU 3B 1008 LDY #$3B INDEX FOR 0/1 TEST
FFle: 20 C FC 1009 RD3 JSR RDBYTE READ A BYTE

FF19: 81 3C 1010 STA (AlL,X) STORE AT (Al)

FF1B: 45 2E 1011 EOR CHKSUM

FF1D: 85 2E 1012 STA CHKSUM UPDATE RUNNING CHKSUM
FF1F: 20 BA FC 1ul3 JSR NXTAl INCR Al, COMPARE TC A2
FF22: AU 35 luld LDY #$35 COMPENSATE U/1 INDEX
FF24: 90 FO 1015 BCC RD3 LOCP UNTIL DONE

FF26: 20 EC FC 1016 JSR RDBYTE READ CHKSUM BYTE

FF29: C5 2E 1017 CMP CHKSUM

FF2B: FO 0D 1018 BEQ BELL GOCD, SCUND BELL AND RETURN
FF2D: AY C5 1019 PRERR LDA #SC5

FF2F: 20 BED FD 1020 JSR COUT PRINT "ERR", THEN BELL
FF32: AY D2 lu21 LDA #$D2

FF34: 29 ED FD 1022 JSR COUT

FF37: 20 ED FD 1023 JSR CCUT

FF3A: A9 47 1024 BELL LDA #$87 QUTPUT BELL AND RETURN
FF3C: 4C ED FD 1025 Jip COUT

FF3F: AS 48 1026 RESTORE LDA STATUS RESTORE 6502 REG CCWTENTS
FF4l: 48 1027 PHA USED BY CEBUG SCFTWARE
FF42: A5 45 1028 LDA ACC

FF44: A6 46 1029 RESTRL LDX XREG

FF45: A4 47 1030 LDY YREG

FFd4g: 28 1031 PLP

FF43: 60 1032 RTS

FF4A: &5 45 1U33 SAVE STA ACC SAVE 6502 REG CCNTENTS
FF4C: 86 46 1034 sAV1 STX XREG

FF4E: &4 47 1035 STY YREG

FF5u: 08 1036 PHP

FF51: 638 1037 PLA

FF52: &5 4¢ luls STA STATUS

FF54: BA 1039 TSX

FF55: 8o 49 lu40 STX SPNT

FF57: D§ 1041 CLD

FF58: 60 1042 RTS

FF53: 20 84 FE 1043 RESET JSR SETNORM SET SCREEN MODE

FF5C: 20 2F FB 1044 JSR INIT AND INIT KBD/SCREEWN
FF5F: 2V 93 FE lu45s JSR SETVID AS I/0 DEV'S

FFroe2: 20 89 FE 1046 JSR SETKBD

FF65: D3 1047 MON CLD MUST SET HEX MODE!
FFe6: 20 3A FF 1lu4sg JSR BELL

FF69: A9 AA 1049 MONZ LDA #SAA ‘*!' PRCMPT FOR MCN
FF6B: 85 33 1050 STA PROMPT

FF6D: 20 57 FD 1051 JSR GETLNZ READ A LINE

FF70: 20 C7 FF 1052 JSR ZMODE CLEAR MON MODE, SCAN IDX
FF73: 20 A7 FF 1053 NXTITM JSR GETNUM GET ITEM, NON-HEX
FFi6: 84 34 1054 STY YSAV CHAR IN A-REG

169



FF78:
FF7A:
FF7B:
FF7D:
FF30:
PE82:
FF85:
FF§7:
FF8A:
FF8C:
FFoD:
FF8E:
EE8E®
FF30:
FE91:
FE9 3
EE9 5
FF96:
ER98:
EF3Aa:
FFSC:
FF9E:
FFAU:
FFA2:
FFA3:
FFAS:
FFA7:
FFAY:
FFAB:
FFAD:
FFBO:
FFBL:
FEB.3:
FFBS:
FFB7:
FFBY:«
FFBB:
FFBD:
FFBE:
FFCOU:
PPEl:
FFC4:
PPCS:
PRC7%
FFCY:
FECB:
FFCC:
FFCD:
FECE:
FECF:
FFDO:
FFD1:
FFD2:
FFD3:
FFD4:
FFPD5:
FFD6:
FFD7:
FFD8:
FFDY:
FFDA:
FFDB:
FFDC:
FFDD:
FFDE:
FFDF:
FFEU:
FFE]L &
FFE2:
FFE3:
FFE4:
FFES:

AU
88
30
D9
10]
20
A4
4C
A2
ua
VA
uA
VA
UA
26
2%
ca
10
A5
DO
B5
95
95
E8
FO
DU
A2
86
86
BY
o}
49
Cc9
90
69
c9
BU
60
AY
45
B9
48
A5
Ay
84
60
EC
B2
BE
ED
EF
C4
EC
A9
BB
Ab
A4
06
95
a7
u2
05
FO
00
EB
93
A7
Co
99
B2
c9
BE

E8
cc
F8
BE
34
43
u3

3B

Fe
21
06
3F
3D
41

r3
VRS
o
3B
3P
U

Bu
A
D3
388
FAa
crC

FE

FE

EF

EF

J2

FE

1055
1056
1057
1058
1659
luéu
1061
1062
1063
1064
1065
166
1067
1068
1069
1070
1071
1072
1073
1074
1075
1078
1077
1078
1079
1080
1031
1082
1083
1084
1u85
1086
1087
10838
1089
105y
1091
lug2
1u33
1u94
1093
1696
1997
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
11.13
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126

CHRSRCH

DIG

NXTBIT

NXTBAS

NXTBS2

GETNUM

NXTCHR

TOSUE

ZMODE

CHRTBL

SUBTBL

LDY
DEY
BMI
CcMP
BNE
JSR
LDY
JUP
LDX
ASL
ASL
ASL
ASL
ASL
ROL
ROL
DEX
3PL
LDA
BNE
LDA
STA
STA
INX
BEQ
BNE
LDX
STX
ST

LDA
INY
EOR
CMP
BCC
ADC
CMP
BCS
RTS
LDA
PHA
LDA
PHA
LDA
LDY
STY
RTS
DFB
DFB
DFB
DFB
DFB
CFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

#$17

MON
CHRTBL, Y
CHRSRCH
TCSUB
YSAV
NXTITH
#503

A

A

A

A

A

A2L

A2H

NXTBIT
MCLE
NXTBS2
A2H,X
AlH,X
A3H,X

NXTBAS
NXTCHR
#$U0
A2L
A2H
IN,Y

#$B0O
#50A
DIG
#3588
#SFA
DIG

#G0/256
SUBTBL,Y

MODE
#S00
MODE

SBC
$B2
$SBE
SED
SEF
$C4
$EC
$A9
$BB
$SA6
SA4
$06
$95
$07
$02
$05
SFO
$00
SEB
$93
SA7
$Co6
$99
#BASCONT-1
#USR-1
#REGZ -1

170

X-REG=0 IF NO HEX INPUT

NOT FOUND, GO TO MON
FIND CMND CHAR IN TEL

FOUNC, CALL CCRRESPONDING
SUBRCUTINE

GOT HEX DIG,
SHIFT INTO A2

LEAVE X=$FF IF DIG

IF MODE IS ZERO
THEN COPY &2 1O
Al AND A3

CLEAR A2

GET CHAR

IF HEX DIC, THEN

PUSH HIGH-ORDER
SUBR ACR Oiv STIK

PUSH LCW ORLER
SUBR ACR ON STK

CLR Y0DE, OLD MODE
TO A-REG

GO TO SUBR VIA KRTS

F ("CTRL-C")

F("CTRL-Y")

F ("CTRL-E")

F("TT)

F("V")

F ("CTRL-K")

F("S")

F ("CTRL-P")

F("CTRL-B")

F("-")

F ()

F("t") (F=EX-OR $B0+$89)

F ()

PN

F("IM)

F("G")
F("R")
F(":")
F(".")
F("CR")
F (BLANK)



FFES&:
FFE9:
FFEA:
FFEB:
FEEC ¢
FFED:
FFEE:
FFEF:
FFFO:
FFF1:
EEF2:
BEF34
FFF4:
FFFS:
FFF 63
FFF7:
PEEPG:
EFF9:
FFFA:
FEFB:
EEFC:
FFFD:
FFFE:
EEFE:

1127
1123
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
113y
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153 XQTNZ

#TRACE-1

$VFY-1

#INPRT-1

#STEPZ-1

#OUTPRT-1

#XBASIC-1

#SETMODE-1

#SETMGDE-1

4MOVE-1

FLT-1

#SETNORM-1

#SETINV-1

4LIST-1

#WRITE-1

4G0O-1

#READ-1

4SETMODE-1

#SETMODE-1

#CRMON-1

4B LANK-1

4NMI NMI VECTOR
#NHI/256

#RESET RESET VECTOR
#RESET/256

#IRQ IRQ VECTCR
BIRQ/256

s3C

171



SYMBOL TABLE
(NUMERICAL ORDER)

0000
Q022
0026
0024
002D
002E
0030
0034
0038
003C
0040
0044
o047
004F
02F2
O3FB
CO00
G030
C053
COs57
CO5B
COSF
CFFF
F80c
F826
F836&
F856
F87F
F8AS5
FBC?
FBFS
FR2é6
F?40
Fod4a
F256
Fobaé
FAOQO
FAL2
FAA3
FABA
FAE4
FB11
FB2E
FB4B
FB&F
FB97
FBDO
FBFO
FC10
FC2B
FC58

LOCOo
WNDTOP
GBASL
BAS2L
Ve
FORMAT
COLOR
YSAV
KSIWL
ALl
A3L
ASL
YREG
RNDH
SOFTEV
NMI
I0OADR
SPKR
MIXSET
HIRES
CLRAN1
CL.LRAN3
CLRROM
RTMASK
VL.INEZ
CLRTOP
GBCALC
RTMSKZ
ERR
MNNDX3
NXTCOL
PRADR3
PRNTYX
PRBLZ2
PCADJ3
FMT2
MNEMR
RESET
NOFTX
SL.O0OP
RDSP1
XLTBL
RTS2D
SETWND
SETPWRC
ESCOLD
BASCLC2
STORADV
BS
RT&4
HOME

FC76
FCPE
FCaa
FCC9
FCES
FCFD
FR2F
FD&2
0001
0023
0027
0028
002D
Q02F
0031
0035
0039
003D
0041
0045
0048
0095
O3F4
O3FE
C000
C050
CO54
cos8
CO5C
C0&60
EOQQO
F80E
Fez28
F838
F864
Fgaez
F8aA%
F8D0
F8F9
Fo26
Fe41
Fe4cC
Fa5C
F?B4
FA40
FAGLF
Faasb
Fac7
FAFD
FB19
FB2F

SCRL1
CLEOLZ
WAIT3
HEADR
WRTAPE
RDBIT
ESC
CANCEL
LOC1
WNDBTM
GBASH
BAS2H
RMNEM
LASTIN
MODE
YS5AV1
KEWH
AlH
A3H
ASH
STATUS
PICK
PWREDUP
IRQLOC
KBD
TXTCLR
LOWSCR
SETANO
SETANZ
TAPEIN
BASIC
PLOTL
VL INE
CLRSC2
SETCOL.
INSDS1
GETFMT
INSTDSP
PRMNZ
PRADR4
PRNTAX
PRBL.3
PCADJ4
CHAR 1
IRQ
INITAN
PWRUP
NXTBYT
PWRCON
RTBL
INIT

172

FRSB
FB78
FBYD
FBD?
FBF4
FC1A
FC2C
FC&2
FC8C
FCAO
FCB4
FCD&
FCEC
FDOC
FD35
FD&7
0020
ooz4
0028
002C
002E
002F
0032
0036
003A
003E
0042
0045
0049
0200
03F5
0400
C010
CO51
CO55
co59
CO5D
CO64
E0O03
Fg19
F831
F83cC
F871
F88c
F8BE
F8D4a
F?10
F?30
Fo44
F?53
Fo61

TABV
VIDWAIT
ESCNDOW
BELL1
ADVANCE

ACC
SPNT
IN
AMPERV
LINEL
KBDSTRB
TXTSET
HISCR
CLRANO
CLRANZ
PADDLO
BASIC2
HLINE
RTS1
CLRSC3
SCRN
INSDS2
MNNDX 1
PRNTOP
PRADR1
PRADRS
PRNT X
PCADJ
RTS2



FoB&
FA4cC

Fag1

FALT
FAD7
FBOZ2
FB1E
FB3%
FB&O
FBes
FBAS
FBE4
FRFC

FCz22
FC42
FCbé
FC?3
FCAB
FCBA
FCDB
FCEE
FD13
FD3D
FD6A
0021

0025
0029
002C
002E
002F
0033
0037
0038
QO03F
0043
0044
004E
03F0
03F8
07F8
€020
cos2
CO56
COS5A
COSE
Cco70
F800
F8ic
Fg32
Fg847
F87%9
F89B
Faca
F8DB

CHARZ
BREAK
NEWMON
SETPGE3
REGDSP
DISKID
PREAD
SETTXT
APPLEIL
KBDWAIT
ESCNEW
BELLZ2
RTESG
VTAB
CLREOP
LF
SCRL.3
WAILT
NXTA1
ZERDLY
RDBYT2
KEYIN
NOTCR
GETLN
WNDWDTH
cv
BASH
LMNEM
CHKSUM
SIGN
PROMPT
CSWH
PCH
ARH
A4H
XREG
RNDL.
BRKV
USRADR
MSLOT
TAPEQUT
MIXCLR
LORES
SETAN1
SETAN3I
PTRIG
PLOT
HLINEL
CLRSCR
GBASCALC
SCRNZ2
IEVEN
MMND X2
PRNTBL

Fo14
F?38
F248
Fe54
Fo62
F?CO
FASY
Fa9B
FAAR
FaDA
FBO?
FB25
FB40O
FB63
FB94
FBC1
FBEF
FBFD
FC24
FC46
FC70
FC?C
FCA®
Fces
FCE2
FCFA
FD21
FDSF
FD71
FD75
FDe2
FDB3
FDD1
FDED
FEO4
FE1D
FE3é&
FE75
FEB4
FESD
FE?B
FEB3
FEC4
FEED
FFOA
FF3F
FFo9
FF7A
FFAZ2
FFC7
FD7E
FD®?6
FDB&
FRDA

PRADRZ
REL.ADR
PRBLNK
PCADJZ
FMTL
MNEML
OLDBRK
FIXSEV
SETPL.P
RGDSPF1
TITLE
PREADZ
SETGR
STITLE
NOWAIT
BASCALC
RTSZ2B
VIDOUT
VTABZ
CLEOP1
SCROLL
CLREOL
WAITZ2
RTS4B
ONMEDLY
RD2BIT
KEYINZ2
MOTCR1
BCKERC
NXTCHAR
PRAL
XAM

ADD
couT
BLANK
SETMDZ
VFY
ALPC
SETMORM
INPRT
I0PRT
BASCONT
STEPZ
WRBYTE
RD2
RESTORE
OLDRST
CHRSRCH
NXTBS2
ZMODE
CAPTST
PRYX2
DATAQUT
PRBYTE

173

FDFO
FEOB
FE20
FESS8
FE78
FEB6
FE93
FEA7
FERA
FECA
FEEF
FF16
FF44
FF&S
FF8a
FFa7
FFCC
FDB4
FDA3
FDCS
FDE3
FDF&
FE17
FEZ22
FESE
FE7F
FE8B%
FE?S5
FEA9
FEBF
FECD
FEFé&
FF2D
FF4A
FF&9
FF?0
FFAD
FFE3
FDBE
FDAD
FDC6
FDES
FEQO
FE18
FEZ2C
FE&63
FE8O
FESR
FEQ7
FEBO
FEC2
FED4
FEFD
FF3A

CouT1
STOR
LT
VFYOK
ALPCLP
SETIFLG
SETVID
IOPRT1
eln]

UBR
WRBYT2
RD3
RESTR1
MON
DIG
GETNUM
CHRTBL
ADDINP
XAMS
RTS4C
PRHEX
cCouTZ
RTSS
LT2
LIST
ALPCRTS
SETKBD
OQUTPORT
IOPRT2
REGZ
WRITE
CRMON
PRERR
SAVE
MONZ
NXTBIT
NXTCHR
SUBTBL
CROUT
MODBCHK
XAMPM
PRHEXZ
BL.1
SETMODE
MOVE
LIsT2
SETINV
INPORT
OUTPRT
XBASIC
TRACE
WR1
READ
BELL



FF4C
FF73
FF98
FFEE

85AV1
NXTITM
NXTBAS
TOSUB

SYMBOL TABLE
(ALPHABETICAL ORDER)

003D
FE7F
0040
0044
FBF4
0024
0029
FD71
FEOO
FC10
FoBA
0024
CO5%9
FC?C
F83C
FDED
FCo2
0025
F8a5
FB97
F286
0026
FD&A
FCC?
F819
0200
Faaa
CO0O0
O3FE
C000
0038
0400
0000
FEZ22
C053
Faca
FF&%9
FAB1
FDSF
FFo8
FD75
FADS
FES7

AlH
ALPCRTS
A3L

ADL.
ADVANCE
BABZL
BASH
BCKSPC
Bl.1

INSDS1
I0ADR
IRQLOC
KBD
KSWL.
LINEL
L.OCO
Lra
MIXSET
MNNDX2
MONZ
NEWMON
NOTCR1
NXTBAS
NXTCHAR
OLDBRK
QUTPRT

F956
0095
Fo10
F930
FDDA
FDE3
FEDB
0033
03F 4
FF16
FD35
FAD7
FF3F
004F
FB7F
Fo61
003C
003F
0043
0045
03F5
FBC1
E00O
FBD%
FEO4
FD&2
002E
FCAD
CO5B
Fcaz
Faaz
FDFO
FEF6
FDB6
FCae
FD2F
002E
FE56
FFa7
cos57
FCs8
FB2F
FB8c

PCADJU2
PICK
PRADR 1
PRADRS
PRBYTE
PRHEX
PRNTBL
PROMPT
PWREDUP
RD3
RDCHAR
REGDSP
RESTORE
RNDH
RTMSKZ
RTS2
AlL
AZH
A4H

ACC
AMPERV
BASCALC
BASIC
BELL.1
BLANK
CANCEL.
CHKSUM
CLEOL2
CLRANI
CLREOP
CLRSCR
CouT1
CRMON
DATAQUT
ESC1
ESC
FORMAT
GBCALC
GETNUM
HIRES
HOME
INIT
INSDS2

174

FEA7
FA40
FD1B
002F
FESE
0001
FE20
F9CO
FBCY
FF65
O3FB
FB94
FF20
FFAD
FF59
C064
F95¢
FBOE
Fo14
Fo4A
FB1E
FDES
FBD4
FD96
FAAL
FCFD
FDOC
FEBF
FF44
004E
FB31
FBFC
FE78
003E
0042
FDB4
FB&O
FBDO
E003
FBE4
FA4C
FD7E
FF76

IOPRTS
IRG
KEYIN
LASTIN
LIST
LOC1
LT
MMNEML.
MNNDX3
MON
NMI
NOWAIT
NXTBIT
NXTCHR
OLDRST
PADDLO
PCADJ4
PLOTI1
PRADRR2
FRBL2
PREAD
PRHEXZ
PRNTQOP
PRYX2
PWRUP
RDBIT
RDKEY
REGZ
RESTR1
RNDL.
RTS1
RTS3
ALPCLP
AZL
AdL
ADDINP
APPLEII
BASCLC2
BASIC2
BELL2
BREAK
CAPTST
CHRSRCH



FC9E
CO5D
CFFF
FB36
FDFé&
0037
FFBA
FRAS
FASR
F847
F8A9
FEB&
co55
FE9B
FESB
F8D0
FEA9
co10
FD21
002F
FE&3
CO56
002E
FAQO
FDAD
FERC
FAAS
FCBA
FFAZ
FBFS
FCER
F954
003B
FB00
F926
F94C
FB25
FBF9
F944
co70
FCFA
FCEE
FAE4
Fo38
FADA
FB19
FBEF
Fces
FE75
0041
0045
FDD1
002B
FEB3
ooze

CLEOLZ
CLRANZ
CLRROM
CLRTOP
couTZ
CSWH
DIG
ESCMEW
FIXSEV
GBAGCALC
GETFMT
>0
HISCR
TEVEN
INPORT
INSTDSP
IOPRTR2
KBDSTRRB
KEY INZ
LENGTH
LIsT2
L.ORES
MASK
MNEMR
MOD8CHK
MOVE
NOFIX
NXTAL
NXTBS2
NXTCOL.
ONEDLY
PCADJZ
PCH
PLOT
PRADR3
PRBL3
PREADZ
PRMNZ
PRNTX
PTRIG
RD2BIT
RDBYT2
RDSP1
REL.ADR
RGDGP 1
RTBL.
RTS2B
RTS4B
ALPC
A3H
ASH
ADD
BAS2H
BASCONT
BaASL.

FF3A
03F0
FeB4
FFCC
FC46
COSF
Fg838
G030
FDBE
Q036
FROZ
FB?B
Fo6a
0027
FR&7
0o2C
Fg1c
FaaF
FESD
0032
FE9B
FB8e
0039
FC&6
002¢
co%4
cosa
FB8BE
0031
O7F8
FD3D
FCB4
FACT
FF73
FE?5
Foo3
0024
FD92
Fe2a
Fe48
FF2D
Fe41
F?40
FAFD
FFOA
FCEC
FEFD
FA&L2
002D
Fa0c
FB2E
FDCS
FE17
FC2B
FC76
F879

BELL
BRKV
CHAR L
CHRTHEL
CLEOPL
CLLRANG
CLRS8C2
COLOR
CROUT
CSWL.
DISKID
ESCNOW
FMT 1
GBASH
GETLIMZ
H2
HLINEL
INITAN
INPRT
INVFIL.G
I0PRT
KBDWALT
KSWH
LF
LMNEM
LOWECR
MIXCLR
MNND X1
MODE
MSLOT
NOTCR
NXTA4
NXTBYT
MNXTITM
OQUTPORT
PCAD.
PCL
PRAL
PRADRZ
PRBL.NK
PRERR
PRMTAX
PRNTYX
PWRCON
RD2
RDBYTE
READ
RESET
RMNEM
RTMASHK
RTS2D
RTS4C
RTES
RTS4
SCRL1
SCRNZ

175

COo5C
FEB&
FEl18
FB&F
002F
0049
FEOB
C060
FECZ2
FECA
FES8
F82g
FCAB
o022
FEEF
FDA3
FBR11
Q034
FC8c
FC70
COSE
FEBO
FE84
FB39
FABA
0048
FBFO
coz20
CO50
03F8
FBFD
FC24
FCAA
o021
FEED
FDCé&
0046
FCDB
FF4C
FC99
cose
F864
FE89
FAA?
FER3
O3F2
FEC4
FFE3
FBO?
€051
002D
FB78
FC22
0023
FED4

SETANZ
SETIFLG
SETHMODE
SETPWRC
SIGN
SPNT
STOR
TAPEIN
TRACE
USR
VFYOK
VLINE
WAIT
WNDTOP
WRBYT2
XAM8
XLTBL
Ysav
SCRL.2
SCROL.L
SETAN3
SETINV
SETNORM
SETTXT
SLO0OP
STATUS
STORADV
TAPEQUT
TXTCLR
USRADR
VIDpouT
VTABZ
WAIT3
WNDWDTH
WRBYTE
XAMP M
XREG
ZERDLY
SaV1
SCRL2
SETANO
SETCOL.
SETKBD
SETPG3
SETVID
SOFTEV
STEPZ
SUBTBL
TITLE
TXTSET
va
VIDWAIT
VTAR
WNDBTM
WR1



FECD
FDB3
0047
FFC7
FF4A
Fa7zi
COSA
FB40
FE1D
FAAD
FB4B
030
FB&6S
FBSB
FFBE
FC1A
FE36
F826
FCA®?
0020
FCDé&
FCES
FEBO
0035

SYMBOL. TABLE SIZE
BYTES USED
BYTEE REMAINING

2589
2531

WRITE
XA
YREG
ZMODE
SAVE
SCRN
SETANL
SETGR
SETMDZ
SETPLP
SETWND
SPKR

STITLE

TABV
TOSUB
Up

VFY
VLINEZ
WAIT2
WNDLFT
WRBIT
WRTAPE
XEASIC
YSAV1

SLIST 44

176



>~
2
<
%)
%)
o,
—
45,




65@2: The manufacturer’s name for the microprocessor at the heart of your Apple.

Address: As a noun: the particular number associated with each memory location. On the
Apple, an address is a number between @ and 65535 (or $000@ and $FFFF hexadecimal). As a
verb: to refer to a particular memory location.

Address Bus: The set of wires, or the signal on those wires, which carry the binary-encoded
address from the microprocessor to the rest of the computer.

Addressing mode: The Apple’s 6502 microprocessor has thirteen distinct ways of referring to
most locations in memory. These thirteen methods of forming addresses are called addressing
modes.

Analeg: Analog measurements, as opposed to digital measurements, use an continuously vari-
able physical quantity (such as length, voltage, or resistance) to represent values. Digital meas-
urements use precise, limited quantities (such as presence or absence of voltages or magnetic
fields) to represent values.

AND: A binary function which is ““on”’ if and only if all of its inputs are ‘‘on’’.

Apple: 1. The round fleshy fruit of a Rosaceous tree (Pyrus Malus). 2. A brand of personal
computer. 3) Apple Computer, Inc., manufacturer of home and personal computers.

ASCII: An acronym for the American Standard Code for Information Interchange (often called
“USASCII” or misinterpreted as ‘““ASC-II’). This standard code assigns a unique value from @
to 127 to each of 128 numbers, letters, special characters, and control characters.

Assembler: 1) One who assembes electronic or mechanical equipment. 2) A program which
converts the mnemonics and symbols of assembly language into the opcodes and operands of
machine language.

Assembly language: A language similar in structure to machine language, but made up of
mnemonics and symbols. Programs written in assembly language are slightly less difficult to write
and understand than programs in machine language.

BASIC: Acronym for ‘‘Beginner’s All-Purpose Symbolic Instruction Code’’. BASIC is a higher-
level language, similar in structure to FORTRAN but somewhat easier to learn. It was invented
by Kemney and Kurtz at Dartmouth College in 1963 and has proved to be the most popular
language for personal computers.

Binary: A number system with two digits, ‘@’ and ‘‘1”’, with each digit in a binary number
representing a power of two. Most digital computers are binary, deep down inside. A binary sig-
nal is easily expressed by the presence or absence of something, such as an electrical potential or
a magnetic field.

Binary Function: An operation performed by an electronic circuit which has one or more inputs
and only one output. All inputs and outputs are binary signals. See AND OR, and Exclusive-OR.

Bit: A Binary digIT. The smallest amount of information which a computer can hold. A single
bit specifies a single value: “@”” or ““1”’. Bits can be grouped to form larger values (see Byte and
Nybble).

Board: See Printed Circuit Board.

178



Bootstrap (‘““boot’’): To get a system running from a cold-start. The name comes from the
machine’s attempts to ‘‘pull itsef off the ground by tugging on its own bootstraps.”

Buffer: A device or area of memory which is used to hold something temporarily. The ‘‘picture
buffer”’ contains graphic information to be displayed on the video screen; the “‘input buffer’
holds a partially formed input line.

Bug: An error. A hardware bug is a physical or electrical malfunction or design error. A software
bug is an error in programming, either in the logic of the program or typographical in nature. See
“feature’”.

Bus: A set of wires or fraces in a computer which carry a related set of data from one place to
another, or the data which is on such a bus.

Byte: A basic unit of measure of a computer’s memory. A byte usualy comprises eight bits.
Thus, it can have a value from @ to 255. Each character in the ASCII can be represented in one
byte. The Apple’s memory locations are all one byte, and the Apple’s addresses of these loca-
tions consist of two bytes.

Call: As a verb: to leave the program or subroutine which is currently executing and to begin
another, usualy with the intent to return to the original program or subroutine. As a noun: an
instruction which calls a subroutine.

Character: Any graphic symbol which has a specific meaning to people. Letters (both upper- and
lower-case), numbers, and various symbols (such as punctuation marks) are all characters.

Chip: See Integrated Circuit.

Code: A method of representing something in terms of something else. The ASCII code
represents characters as binary numbers, the BASIC language represents algorithms in terms of
program statements. Code is also used to refer to programs, usually in low-level languages.

Cold-start: To begin to operate a computer which has just been turned on.

Color burst: A signal which color television sets recognize and convert to the colored dots you
see on a color TV screen. Without the color burst signal, all pictures would be black-and-white.

Computer: Any device which can recieve and store a set of instructions, and then act upon those
instructions in a predetermined and predictable fashion. The definition implies that both the
instruction and the data upon which the instructions act can be changed. A device whose instruc-
tions cannot be changed is not a computer.

Control (CTRL) character: Characters in the ASCII character set which usually have no graphic
representation, but are used to control various functions. For example, the RETURN control
character is a signal to the Apple that you have finished typing an input line and you wish the
computer to act upon it.

CRT: Acronym for ‘‘Cathode-Ray Tube’’, meaning any television screen, or a device containing
such a screen.

Cursor: A special symbol which reminds you of a certain position on something. The cursor on

a slide rule lets you line up numbers; the cursor on the Apple’s screen reminds you of where you
are when you are typing.

179



Data (datum): Information of any type.
Debug: To find bugs and eliminate them.
DIP: Acronym for “Dual In-line Package’’, the most common container for an Integrated Cir-
cuit. DIPs have two parallel rows of pins, spaced on one-tenth of an inch centers. DIPs usually

come in 14-, 16-, 18-, 20-, 24-, and 40-pin configurations.

Disassembler: A program which converts the opcodes of machine language to the mnemonics of
assembly language. The opposite of an assembler.

Display: As a noun: any sort of output device for a computer, usually a video screen. As a
noun: to place information on such a screen.

Edge connector: A socket which mates with the edge of a printed circuit board in order to
exchange electrical signals.

Entry point: The location used by a machine-language subroutine which contains the first exe-
cutable instruction in that subroutine; consequently, often the beginning of the subroutine.

Excusive-OR: A binary function whose value is “‘off”’ only if all of its inputs are “off”’, or all of
its inputs are ‘“‘on”’.

Execute: To perform the intention of a command or instruction. Also, to run a program or a
portion of a program.

Feature: A bug as described by the marketing department.

Format: As a noun: the physical form in which something appears. As a verb: to specify such a
form.

Graphic: Visible as a distinct, recognizable shape or color.

Graphics: A system to display graphic items or a collection of such items.

Hardware: The physical parts of a computer.

Hexadecimal: A number system which uses the ten digits @ through 9 and the six letters A
through F to represent values in base 16. Each hexadecimal digit in a hexadecimal number
represents a power of 16. In this manual, all hexadecimal numbers are preceded by a dollar sign
®.

High-level Language: A language which is more intelligible to humans than it is to machines.

High-order: The most important, or item with the highest vaue, of a set of similar items. The
high-order bit of a byte is that which has the highest place value.

High part: The high-order byte of a two-byte address. In decimal, the high part of an address is
the quotient of the address divided by 256. In the 6502, as in many other microprocessors, the
high part of an address comes last when that address is stored in memory.

Hz (Hertz): Cycles per second. A bicycle wheel which makes two revolutions in one second is
running at 2Hz. The Apple’s microprocessor runs at 1,023,000Hz.

180



1/0: See Input/Output.
IC: See Integrated Circuit.

Input: As a noun: data which flows from the outside world into the computer. As a verb: to
obtain data from the outside world.

Input/Output (I/0): The software or hardware which exchanges data with the outside word.

Instruction: The smallest portion of a program that a computer can execute. In 6502 machine
language, an instruction comprises one, two, or three bytes; in a higher-level language, instruc-
tions may be many characters long.

Integrated circuit: A small (less than the size of a fingernail and about as thin) wafer of a glassy
material (usually silicon) into which has been etched an electronic circuit. A single IC can con-
tain from ten to ten thousand discrete electronic components. ICs are usually housed in DIPs
(see above), and the term IC is sometimes used to refer to both the circuit and its package.

Interface: An exchange of information between one thing and another, or the mechanisms
which make such an exchange possible.

Interpreter: A program, usualy written in machine language, which understands and executes a
higher-level language.

Interrupt: A physical ettect which causes the computer to jump to a special interrupt-handling
subroutine. When the interrupt has been taken care of, the computer resumes execution of the
interrupted program with no noticeable change. Interrupts are used to signal the computer that a
particular device wants attention.

K: Stands for the greek prefix ‘Kilo’’, meaning one thousand. In common computer-reated
usage, ‘‘K’’ usually represents the quantity 210, or 1024 (hexadecimal $400).

Kilobyte: 1,024 bytes.

Language: A computer language is a code which (hopefully!) both a programmer and his com-
puter understand. The programmer expresses what he wants to do in this code, and the com-
puter understands the code and performs the desired actions.

Line: On a video screen, a ‘“‘line’’ is a horizontal sequence of graphic symbols e xtending from
one edge of the screen to the other. To the Apple, an input line is a sequence of up to 254 char-
acters, terminated by the control character RETURN. In most places which do not have personal
computers, a line is something you wait in to use the computer.

Low-level Language: A language which is more intelligible to machines than it is to humans.

Low-order: The least important, or item with the least vaue, of a set of items. The low-order bit
in a byte is the bit with the least place vaue.

Low part: The low-order byte of a two-byte address. In decimal, the low part of ann address is the
remainder of the address divided by 256, also called the ‘‘address modulo 256.”” In the 6502, as
in many other microprocessors, the low part of an address comes first when that address is stored
in memory.

Machine language: The lowest level language which a computer understands. Machine

181



languages are usually binary in nature. Instructions in machine language are single-byte opcodes
sometimes followed by various operands.

Memory address: A memory address is a two-byte value which selects a single memory location
out of the memory map. Memory addresses in the Apple are stored with their low-order bytes
first, followed by their high-order bytes.

Memory location: The smallest subdivision of the memory map to which the computer can
refer. Each memory location has associated with it a unique address and a certain value. Memory
locations on the Apple comprise one byte each.

Memory Map: This term is used to refer to the set of all memory locations which the micropro-
cesor can address directly. It is also used to describe a graphic representation of a system’s
memory.

Microcomputer: A term used to described a computer which is based upon a microprocessor.

Microprocessor: An integrated circuit which understands and executes machine language pro-
grams.

Mnemonic: An acronym (or any other symbol) used in the place of something more difficut to
remember. In Assembly Language, each machine language opcode is given a three letter
mnemonic (for example, the opcode $60 is given the mnemonic RTS, meaning ‘‘ReTurn from
Subroutine”).

Mode: A condition or set of conditions under which a certain set of rules apply.

Modulo: An arithmetic function with two operands. Modulo takes the first operand, divides it by
the second, and returns the remainder of the division.

Monitor: 1) A closed-circuit television receiver. 2) A program which allows you to use your
computer at a very low level, often with the values and addresses of individual memory locations.

Multiplexer: An electronic circuit which has many data inputs, a few selector inputs, and one
output. A multiplexer connects one of its many data inputs to its output. The data input it
chooses to connect to the output is determined by the selector inputs.

Mux: See Multiplexer.

Nybble: Colloquial term for half of a byte, or four bits.

Opcode: A machine language instruction, numerical (often binary) in nature.

OR: A binary function whose value is “‘on”’ if at least one of its inputs are “‘on’’.

Output: As a noun, data generated by the computer whose destination is the real world. As a
verb, the process of generating or transmitting such data.

Page: 1) A screenfull of information on a video display. 2) A quantity of memory locations,
addressible with one byte. On the Apple, a ‘‘page’” of memory contains 256 locations.

Pascal: A noted French scientist.

PC board: See Printed Circuit Board.

182



Peripheral: Something attached to the computer which is not part of the computer itself. Most
peripherals are input and/or output devices.

Personal Computer: A computer with memory, languages, and peripherals which are well-suited
for use in a home, office, or school.

Pinout: A description of the function of each pin on an IC, often presented in the form of a
diagram.

Potentiometer: An electronic component whose resistance to the flow of electrons is propor-
tional to the setting of a dial or knob. Also known as a ‘‘pot’’ or ‘‘variable resistor’’.

Printed Circuit Board: A sheet of fiberglass or epoxy onto which a thin layer of metal has been
applied, then etched away to form traces. Electronic components can then be attatched to the
board with molten solder, and they can exchange electronic signals via the etched traces on the
board. Small printed circuit boards are often called ‘‘cards’’, especially if they are meant to con-
nect with edge connectors.

Program: A sequence of instructions which describes a process.

PROM: Acronym for ‘‘ Programmable Read-Only Memory”’. A PROM is a ROM whose contents
can be altered by electrical means. Information in PROMs does not disappear when the power is
turned off. Some PROMs can be erased by ultraviolet light and be reprogrammed.

RAM: See Random-Access Memory.

Random-Access Memory (RAM): This is the main memory of a computer. The acronym RAM
can be used to refer either to the integrated circuits which make up this type of memory or the
memory itself. The computer can store values in distinct locations in RAM and recall them
again, or alter and re-store them if it wishes. On the Apple, as with most small computers, the
values which are in RAM memory are lost when the power to the computer is turned off.
Read-Only Memory (ROM): This type of memory is usually used to hold important programs
or data which must be available to the computer when the power is first turned on. Information
in ROMs is placed there in the process of manufacturing the ROMs and is unalterable. Informa-
tion stored in ROMs does not disappear when the power is turned off.

Reference: 1) A source of information, such as this manual. 2) As a verb, the action of examin-
ing or altering the contents of a memory location. As a noun, such an action.

Return: To exit a subroutine and go back to the program which called it.
ROM: See Read-Only Memory.

Run: To follow the sequence of instructions which comprise a program, and to complete the
process outlined by the instructions.

Scan line: A single sweep of a cathode beam across the face of a cathode-ray tube.

Schematic: A diagram which represents the electrical interconnections and circuitry of an elec-
tronic device.

Scroll: To move all the text on a display (usually upwards) to make room for more (usually at
the bottom).

183



Soft switch: A two-position switch which can be ‘‘thrown’’ either way by the software of a com-
puter.

Software: The programs which give the hardware something to do.

Stack: A reserved area in memory which can be used to store information temporarily. The
information in a stack is referenced not by address, but in the order in which it was placed on the
stack. The last datum which was ‘‘pushed’’ onto the stack will be the first one to be “‘popped”’
off it.

Strobe: A momentary signal which indicates the occurrence of a specific event.

Subroutine: A segment of a program which can be executed by a single call. Subroutines are
used to perform the same sequence of instructions at many different places in one program.

Syntax: The structure of instructions in a given language. If you make a mistake in entering an
instruction and garble the syntax, the computer sometimes calls this a “SYNTAX ERROR.” -

Text: Characters, usually letters and numbers. ““Text’” usually refers to large chunks of English,
rather than computer, language.

Toggle switch: A two-position switch which can only flip from one position to the other and
back again, and cannot be directly set either way.

Trace: An etched conductive path on a Printed-Circuit Board which serves to electronically con-
nect components.

Video: 1) Anything visual. 2) Information presented on the face of a cathode-ray tube.

Warm-start: To restart the operation of a computer after you have lost control of its language or
operating system.

Window: Something out of which you jump when the power fails and you lose a large program.
Really: a reserved area on a display which is dedicated to some special purpose.

184



>~
aw
o
<
R~
@)
&
=
=
=
»




Here are some other publications which you might enjoy:

Synertek/MOS Technology 6500 Programming Manual

This manual is an introduction to machine language programming for the MC6502 microproces-
sor. It describes the machine lanuage operation of the Apple’s microprocessor in meticulous
detail. However, it contains no specific information about the Apple. '

This book is available from Apple. Order part number A21.0003.

Synertek/MOS Technology 6500 Hardware Manual
This manual contains a detailed description of the internal operations of the Apple’s 6502
microprocessor. It also has much information regarding interfacing the microprocessor to exter-
nal devices, some of which is pertinent to the Apple.

This book is also available from Apple. Order part number A2L0002.

The Apple IT Monitor Peeled
This book contains a thorough, well-done description of the operating subroutines within the
Apple’s original Monitor ROM.

This is available from the author:

William E. Dougherty
14349 San Jose Street
Los Angeles, CA 91345

Programming the 6502
This book, written by Rodnay Zaks, is an excellent tutorial manual on machine and assembly-
language programming for the Apple’s 6502 microprocessor.

This manual is available from Sybex Incorporated, 2020 Milvia, Berkeley, CA 94704. It should
also be available at your local computer retailer or bookstore. Order book number C202.

6502 Applications
This book, also written by Rodnay Zaks, describes many applications of the Apple’s 6502
microprocessor.

This is also available from Sybex. Order book number D302.
System Description: The Apple II
Written by Steve Wozniak, the designer of the Apple computers, this article describes the basic

construction and operation of the Apple II.

This article was originally published in the May, 1977 issue of BYTE magazine, and is available
from BYTE Publications, Inc. Peterborough, NH 30458.

186



SWEET16: The 6562 Dream Machine
Also written by Steve Wozniak, this article describes the SWEET16® interpretive machine
language enclosed in the Apple’s Integer BASIC ROMs.

This article appeared in the October, 1977 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458.

More Colors for your Apple

This article, written by Allen Watson III, describes in detail the Apple High-Resolution Graphics
mode. Also included is a reply by Steve Wozniak, the designer of the Apple, describing a
modification you can make to update your Revision @ Apple to add the two extra colors available
on the Revision 1 board.

This article appeared in the June, 1979 issue of BYTE magazine, and is available from BYTE
Publications, Inc. Peterborough, NH 30458.

Call APPLE (Apple Puget Sound Program Library Exchange)
This is one of the largest Apple user group newsletters. For information, write:

Apple Puget Sound Program Library Exchange
6708 39th Ave. Southwest
Seatte, Wash., 98136

The Cider Press
This is another large club newsletter. For information, write:

The Cider Press

c/o The Apple Core of San Francisco
Box 4816

San Francisco, CA 94101

187



CoC00000000eoOnounnooooa

188






GENERAL INDEX

0 boards, Revision..............ccceeerveveenn... 3,26
1 board, Revision.............. .3, 26
2716 type PROMS........c.ocovvveriereiereenenn, 94
50Hz modification, Eurapple ... ....10
6502 instruction Set...................... Appendix A
6502 internal registers....

6502 mMicroprocessor............ccveeveevereenn..

- A -

Access Memory (RAM), Random................. 3
address and data buses...................

address multiplexer, RAM .........ccccocvvnrn... 96
addresses and data................ccoccvvevrerneennnn, 40

addressing modes...
analog inputs

annunciator outputs....................... 23, 36, 100
annunciator special locations........................ 24
Apple Firmware card.............ccccoocvvvvvennn.. 73
Apple Language card.............ccoeoveeeevveennnnn.. 3
Apple main board, the ..............coveun...... 3, 89
Apple Mini-assembler...............ocoeovevveenennnn. 49
Apple, photo of the........c.coovvvvvivieereenn, 2
Apple power supply, the.. 2,92
Apple, setting up the...........coeeevvvevevneenann.. 2
Apples, varieties of..............ccoveeveveereeen., 25
ASCII character code.... .5,6,7,8,15
ASCII codes, keys and ............cocoeevvevvveenann.. 7
Autostart ROM listing..... ...Appendix C
Autostart ROM Reset.........cccccovvvvvvvvvennnnn, 36
Autostart ROM special locations...... .37
Autostart ROM..........c...ooovveeeeennn, .25
auxiliary video connector ...........c...ccoovveennnn.. 9
- B --

backspace character.............cccocoeevevevernnnn...
backspace Key ........ccocvvvivirnennnnn,

BASIC, entering..........cccocoeu.......

BASIC, reentering..

bell character .............ocoevvvevevereiieeeennn,

block pinout, configuration
blocks, RAM configuration ....

board 1/0, peripheral...............coccovevvvviviin...
board, Revision @............cc.ccooevevvenennn,
board, Revision 1
board, the Apple main
board schematic, main..............c.ccoc......... 110
buffer, picture
buffer, input .....
built-in I/Oceeeeiviieiiciiiciieeeeeeeee,

190

buses, address and data......................... 88, 90
byte, POWETr-UP.........ooevvvveeereeeeeerarnnn. 37, 65
-

card, Apple Language
card, Apple Firmware
cassette interface jacks.
cassette interface ...............ocoeveereererenvennn.,
cassette tape, saving to
cassette tape, reading from.
changing memory ............c.ccocovevvvevieronnn
character code, ASCIL.................

character, backspace .
character, line-feed...
character, RETURN ..
character, bell.............
characters, prompting ...
characters, keyboard.....
characters, control ..............
clearing the keyboard strobe...
code, ASCII character......
codes, escape...................
codes, keys and ASCII ....
cold start..............cocuu......
colors, Low-Res............
colors, High-Res...............
colors, European High-Res..
command loops, Monitor ..........
commands, creating your own
commands, summary of Monitor .
comparing memory.......................
configuration block pinout......
configuration blocks, RAM
configuration, RAM memory ..............
connector pinout, peripheral...
connector, keyboard ................ccoeon.n.
CONNECLOT, POWET ..vvvvveeevieiiiieiiiieiieeeeeeeaan,
connector, speaker-.....
connector, Game 1/0
connector, auxiliary video ..........ccccveevven... 9
connector, video..................

connectors, peripheral
connnector pinouts, keyboard....................
control characters .......................

control values, Normal/Inverse
Controllers, Game...................... Framamnns
COUT, KEYIN switches...................
COUT standard output subroutine
creating your own commands....................
CSW/KSW SWitches ..........cooocveerevveeernnnn,




CULSOT .ceeeveieieesireeaiteeeetebeestaeeaeesenesaveeeennas
cursor, output..............
cycle, the RESET

-D--

data buses, address and ...............cccceeveennnenn. 90
data, addresses and...........cocceeevvieiieiiecennnnnn

debugging programs s
display special locations, video.................... 13
AiSplay, Vide0....uwmssmsmsnemmpsmsessie 9

- E -

editing an input line
editing featuresS........ccoeevevvviiviieiiiiiecccieene
entering BASIC ........oooovviiiiiiiiiiiiiiinns

entering the Monitor
entry vector, SOft........cccccevvviiiiiinieinniinnnen
escape (ESC) codes ......covvvvvivuiivivriivinanns
Eurapple 50Hz modification ..
European High-Res colors
examining memory...

expansion ROM..........cccccevvvvveieiiininneeenn,

- F--

feature, the Stop-List ........ccocvvvvevvvernnne 26, 30
features, input/output .. .20
features, editing........ 25
features, keyboard........... vannd
features, microprocessor..... .88
features, power supply..... .92
Firmware card, Apple.........ccccoevvevvereennenne. 73
(““flag”) inputs, one-bit... 24,78
format, Text SCreen ........c.ooveevveeeviecueeannanens 16
format, Low-Res screen ..... .18
format, High-Res screen .... .21
from cassette tape, reading..............c.......... 47
G =

Game Controllers.........cccceevvviivievieinecennnens
Game [/0 connector ..........c..coveeunnnn.
generator, the video ..........cccceeeiiiieeiiinnnnnn,
GETLN and input lines... o
graphics modes .........ccccceovveevieniiiniienniecnnen.
graphics, High-Res .........cccocvevieiieiiniennne,
graphics, LOW-ReS ........ccccevvviviiniiiiiiinne, 17
--H--

hexadecimal notation...............ceeevveeveenennne. 40
High-Res colors, European.......................... 20

191

High-Res graphics......
High-Res screen, the..........
High-Res video mode, the .
High-Res colors..................

i

input buffer........ccoovvvviveniniciieeieeces
input line, editing an -
input lines, GETLN and.............cc.cco.n......
input prompting..........ccccoveevveeiverieeeniinnnns
input subroutine, RDKEY standard -
input/output features...........cccoveevviveernennn..
input/output special locations......................
input/output -
IAPULS, (data.,e., coisvesssmemmom sspmamsssss
inputs, one-bit (“‘flag’®)......ccoeceverreerennn

inputs, analog ............c.........
inputs, single-bit pushbutton.....................
instruction set, 6502
instructions, Mini-Assembler .
interface jacks, cassette...........c..ccveen...
interface, cassette ............
internal registers, 6502 .
interrupts ......ocovevveeeennns

inverse text mode.........

I/0 connector, Game ................

I/0 programming suggestions ..................... 80
I/0 special locations ...........ccoeeveeeevvveenenennen. 79
I/0, built-in.................. 78, 98
1/0, peripheral board..............cccvvveeerrvnrennn. 79
1/0, peripheral Slot.........cccvvvevveiiviiiniinnennn. 79
e [

jacks, cassette interface........................ 22,103
jacks, video output .......

jumper, “USER 1 ...
=K e

ke, backsSpace ..osimwmmmmermeamsemsssrmsgiises 34
key, retype
keyboard characters............ccccoeveveivnnvennnnne
keyboard connector ..........ccceeeveeeernineens

keyboard connnector pinouts -
keyboard features ........cccvvveeeeeiiiieiniivnvnnnneennn,
keyboard schematic...........ccccccoovvnviiivnnnnen.

keyboard special locations
keyboard strobe................... 6, 78,79, 98, 102
keyboard strobe, clearing the
keyboard, review of the v
keyboard, reading the..........c..ccoeeevveicinnnnnn
KEYIN switches, COUT,




keys and ASCII codes..........coovvvriiivvineerennns 7
)

Language card, Apple.....cc.ccoeevveveevnnnennn. 3, 69
leaving the Mini-Assembler ........................ 50

line, editing an input .
line-feed character ............
lines, GETLN and input...

listing, Autostart ROM.. ..Appendix C
listing, Monitor ROM................... Appendix C
listing machine language programs.............. 49
list of special locations... Appendix B
locations, list of special........... ...Appendix B
locations, annunciator special ...................... 24

locations, video display special ...
locations, input/output special....

locations, text window special ..........
locations, Autostart ROM special..... .37
locations, Monitor special................. .65
locations, keyboard special .. .6
locations, 1/0 special............ccocu....... .19
loops, Monitor command ............................ 56
Low-Res colors -
Low-Res screen, the.........c..coovevvieivnnnnnen. 18
Low-Res video mode, the ..........ccc.coouneen. 17
lukewarm start............coceeveeeiiiiiieeiceeinen, 36
M --

machine language programs, listing............. 49
main board, the Apple .......c..coeuvvvevvennnne.
main board schematic....

map, SyStem Memory ............c.ceevveeereenenne.
maps, Zero page MeEMmOrY........c..cccveeeveeennenn.
Memory (RAM), Random Access
Memory (ROM), Read-Only...........cc...........
memory configuration, RAM ......................
memory map, system...........

MEMOry maps, ZEro Page.........ccoeveevveeennen.
IMEMOTY PAGES..ccervirerreeerreerrreeeireeeirereireesenness

memory, examining.
memory, changing...

memory, moving..... .44
MEMOTY, COMPATING........cccuveervreeiieeireeannen. 46
memory, RAM........ 68, 95

memory, ROM............... 72, 94
microprocessor features................c.coeueenenn.. 88
microprocessor, 6502 .............. 3, 88
Mini-Assembler instructions ... ...66
Mini-Assembler prompt (!)..... ...50
Mini-Assembler, Apple........... .49
Mini-Assembler, leaving the......... ...50
mode, the text video ........cceevveeviieiiiennnn. 14

192

mode, the Low-Res video ..............coen.......
mode, the High-Res video ..
mode, inverse text...........coevvrvernennnn..
mode, normal text...........ccccoeevunnnn.n..
modes, addressing .. .
modes, graphics...........ccccvvvveevveeveeieieesineann,
modification, Eurapple 50Hz .......................
Monitor command loops ...............
Monitor commands, summary of
Monitor prompt (+) .......cccovevviriviireeenennn,
Monitor ROM RESET...
Monitor ROM listing....................

Monitor ROM........ccoovviiiiiiiiciieiiieeeee,
Monitor special locations...............
Monitor subroutines, some useful
Monitor, entering the....

moving memory...............

multiplexer, RAM address..........c.oocu........

- N --

normal text mode....................... .32
Normal/Inverse control values... .32
notation, hexadecimal................. ...40
number, random..............cccocveeeviiririennenne. 33
-0 --

one (system stack), Page.........c.ccocecverevrnnnn. 69
one-bit (‘‘flag’’) inputs

OULPUL CUISOI . uvimsmssssssvmssmamesmnnssitmsamassies
output jacks, video ........cccceuevvveinnnnnn

output subroutine, COUT standard...
output, utility Strobe..........cceeoveevrviiereeeenns 25
outputs, annunciator...............oeveveeeereeernnnne. 23
outputs, strobe
own commands, creating your..................... 57
s P

page Memory maps, ZE€I0....c.uueeeveivuvvevvennens 74
page one (system stack) ....

PAZE ZETO .vvveeenieeeirireerereeeteenieeeree e
PAEES, SCTEEM 1oevveeeerereeereeireeeeeciie e eeeaee e
pages, memory ...........

peripheral board 1/0

peripheral connector pinout....................... 106
peripheral connectors ........... 3, 105
peripheral slot I/O ..........ccooovvvvevereeeeennn. 79
peripheral slot RAM...........coooevverieineeennn. 82
peripheral slot ROM ... 80
photo of the Apple..... 2
picture buffer..........ccceviiineiinenas szl 2
pinout, peripheral connector...................... 106



pinout, configuration block.................... L1

pinout, ROM ...........ceuvneene .95
pinout, RAM .....cccooiiiiiieiiciiceniceneeece 96
pinouts, keyboard connnector... ...103
POWET CONNECLOT .oeevverreeuiiienaens ..104
power supply features.........ccoeceevveieneeennnne 92
power supply schematic........c..cccoouveneeennnen. 93
power supply, the Apple .... 2, 28, 92
POWET-UP DYLE...vvviieiiiieiiiiieeeniiireciienes 37, 65
programming suggestions, I/0 ..........c......... 80

programs, running machine language.
programs, listing machine language....

programs, debugging ..........ccccevvveeriniinnieennns 51
PROM, peripheral card..........ccecveeerurnnrennne 80
PROM, expansion ROM Or..........cccevvvuvenenne
PROMS, 2716 tyPE ..cuveeerveirieieeeciveenieeeeinenn

prompt (+), Monitor
prompt (1), Mini-Assembler..
prompting characters ...........coceeeveervieeeninnns
PIOMPHNG, INDUL, s sinsmnsvmivsnmsiamsmss ssassds
pushbutton inputs, single-bit.........cc.cccoue.

~R--

RAM address multiplexer ............cccouuveeennee
RAM configuration blocks.........ccccevuveveeennns
RAM memory configuration ....
| LN 8 1015101 (6) o SRRR————————
RAM. pinout. .cuomwsasamss s smpvssasoss
RAM, peripheral slot...................
random access memory (RAM)
random NUMDBET s misvssossmmssoss s
RDKEY standard input subroutine
reading from cassette tape............cccevveennen.

reading the keyboard............ccovviiiiiiniiiiiinn
read-only memory (ROM) .
reentering BASIC ...............
registers, 6502 internal................
relationships, timing signals and..
RESET cycle, the .......ccccvveeennnenn.
RESET, Autostart ROM.
RESET, Monitor ROM...
return character ..............
retype Key ......vvvvveeeennns

review of the keyboard...
Revision @ boards...........
Revision 1 board ...........
ROM listing, Autostart...
ROM listing, Monitor.....
ROM memory .............
ROM pinout ......ccceeeenns

....Appendix C
....Appendix C

ROM RESET, Autostart.... .36
ROM RESET, Monitor........cccccvvuiineriiinnnn 38
ROM special locations, Autostart................ 37

193

ROM, Autostart .........ccoceeeveeeeeeeeeeiiiiiiiinnns 25
ROM, Monitor ............. .25

ROM, peripheral slot........... .80
ROM or PROM, expansion...........cceeennuee.. 84
running machine language programs........... 48
S -

saving to Cassette tape ......cccccceeriereiiiiunninnes 46
schematic, keyboard .........c.ccceeevvviireiinnnnnn. 101
schematic, power Supply........cocceeevcivieeennnnne. 93
schematic, main board

screen format s
sereen: format; Text ..o

screen format, High-Res .
screen format, Low-Res
SCIEEI PAZES...cvveerrrerrrrereeisrreeasneesreesineennes
screen soft switches...
screen, the teXt........oooeeee
screen, the Low-Res.....
screen, the High-Res....
set, 6502 instruction .... .
setting up the Apple.....ccccoeeeenn.
signals and relationships, timing...
single-bit pushbutton inputs......
slot I/0, peripheral....
slot RAM, peripheral.
slot ROM, peripheral.
soft entry vector ...
soft switches..........
soft switches, screen.
speaker connector.......
special locations, list of .................
special locations, video display .
special locations, input/output............c........
special locations, text window ..............c......
special locations, Autostart ROM.
special locations, Monitor...........cccoccovviinene
special locations, keyboard ............ccccovvviinenn.
special locations, 1/0 .
stack), page one (SyStem.........ccccevcveuerurunes
standard input subroutine, RDKEY ............ 32
standard output subroutine, COUT ....
Start, Cold......oouriiiiiiiiiiiiiiiie e
start, luKewarm.......o.ccecveevereviiieiinnnniniiiinnnn.
start, warm
STEP and TRACE........ccccoceeeriiennnennns
Stop-List feature, the ..........cccocveeeniiinns
strobe output, utility....
Strobe OUtPULS.....ccceveeveeruniniiiinnns
strobe, clearing the keyboard ..........
subroutine, COUT standard output....
subroutine, RDKEY standard input..........
subroutines, some useful Monitor............... 61




suggestions, 1/0 programming .................... 80
summary of Monitor commands .
supply features, power.................

supply schematic, pOWer.............ccccveeuvennee.. 93
supply, the Apple power .... 2, 28,92
switches, Soft.................. 12,79, 98
switches, screen soft..........cccccoevvrevvevnnennne. 12
SWitches, tOgElE........ccccvvvvviiiiiiiiieeieeeeieeane 79
switches, COUT, KEYIN .......c..ccccecevuvrnenne 83
switches, CSW/KSW ........ccoevvvviiiiiinnnnnnn, 83
system memory map..... .68
(system stack), page one. ...69
SYStem timMing .......c.ocovveevviiiieeeieeeieeeeneenns 90
=T o=

tape, saving to CasSette ........ccceevvvvuvveeeernnenn. 46

tape, reading from cassette....
text mode, inverse.................
text mode, normal.................

text screen, the.......... .11, 16
text video mode, the .........c..ccooveiveviiinnnnnnns 14
text window special locations....................... 31
text window, the

timing signals and relationships................... 91
timing, system
toggle switches
TRACE, STEP and........c.ccoovvrenvennnnnen. 26, 51

U --

C“USER 17 JUMPET....cvveiiiecieciceeecee e
~ useful Monitor subroutines, some...

utility strobe output.........cocvevevvererveeeeeanne. 25
—V --

values, Normal/Inverse control................... 32
varieties of Apples.......cc.eeeeuenee...

vector, soft entry ....
video connector................
video connector, auxiliary
s (o a[)0) ) R—————

video display special locations ..................... 13
video generator, the ..........ccccoovvvvieeneennn.. 96
video mode, the text.........ccoooevvviievvenennnnn.. 14
video mode, the Low-Res .............c............. 17
video mode, the High-Res ...........c...c.......... 19
video output jacks.........ccceveveeiviiiiiieeenn, 97
o W i=s

WAL STATL. . couisumicsimismmemmmmmmmiemsssssisysosssrsss

window special locations, text

194

window, the teXt........ccoovvvvveeeeveeeeerierennn, 31

s Y an
your own commands, creating..................... 57
. -

ZEro Page MEmOTY MAPS.....ccvvvvvvreeerrerveennnes 74
ZETO, PALL cvvvveevrrrerreeeiiireeeeeeireeeesseressnns 69, 74

INDEX OF FIGURES

Figure 1. Map of the Text screen............... 16
Figure 2. Map of the Low-Res mode......... 18
Figure 3. Map of the High-Res screen....... 21
Figure 4. Cursor-moving escape codes....... 35
Figure 5. System Memory Map.................. 68
Figure 6. Memory Configurations............... 71
Figure 7. Configuration Block Pinouts....... 71
Figure 8. Expansion ROM Enable circuit...85
Figure 9. $CFXX decoding .......cceovevenn....
Figure 10. "The Apple Main Board..

Figure 11. Timing Signals...............c..........
Figure 12. Power Supply Schematic ........... 93
Figure 13. ROM Pinout...................

Figure 14. RAM Pinouts

Figure 15. Auxiliary Video Connector ....... 98
Figure 16. Game I/0 Connector Pinout...100
Figure 17. Keyboard Schematic Drawing .101
Figure 18. Keyboard connector Pinout.....103
Figure 19. Power Connector..................... 104
Figure 20. Speaker Connector.................. 105
Figure 21. Peripheral Connector Pinout...106
Figure 22. Main Board Schematic......110-115



INDEX OF PHOTOS CAST OF

CHARACTERS
Photo 1. The Apple IL.....ccovvvviiiiiiieeeininieneens 2
Photo 2. The Apple Power Supply .......ccooeenen. 3 '
Photo 3. The Apple Keyboard.........cccoeeevuveeeene 6 R e L T e 33
Photo 4. The Video Connectors...... .10 #...
Photo 5. Eurapple jumper pads.........cccceeeeeennn. 11 $...
Photo 6 The Apple Character Set ............ 14 ;& ............................................................ 65
Photo 7. The Game I/O COI'll'lCClOl'. ...... 23 ................................................. 33, 38, 40
Photo 8. The USER 1 JUMPET..........ccoorrrrveernes 99 F s 35

: (colon) .....
C(PETIOA) ot

INDEX OF TABLES

Table 1. Keyboard Special Locations
Table 2. Keys and their ASCII codes
Table 3. The ASCII Character Set.............

Table 4. Video Display Memory Ranges......... 12
Table 5. Screen Soft Switches.........ccceeeue
Table 6. Screen Mode Combinations
Table 7. ASCII Screen Character Set
Table 8. Low-Resolution Colors..........ccceeenne
Table 9. Annunciator Special Locations .......... 24
Table 10. Input/Output Special Locations....... 25
Table 11. Text Window Special Locations....... 31
Table 12. Normal/Inverse Control Values....... 32
Table 13. Autostart ROM Special Locations....37
Table 14. Page Three Monitor Locations ........ 65
Table 15. Mini-Assembler Address Formats...66
Table 16. RAM Organization and Usage..........
Table 17. ROM Organization and Usage .........
Table 18. Monitor Zero Page Usage................
Table 19. Applesoft II Zero Page Usage..........
Table 20. DOS 3.2 Zero Page Usage................
Table 21. Integer BASIC Zero Page Usage......75
Table 22. Built-In I/0 Locations ..............
Table 23. Peripheral Card I/0 Locations
Table 24. Peripheral Card PROM Locations....81
Table 25. I/0 Location Base Addresses........... 82
Table 26. 1/0 Scratchpad RAM Addresses......83
Signal Descriptions:

CTRL G (Dell) ..ovvneceiiiriiiiniiciincens

CTRL H (%) oo 30, 33, 34
CTRL J (line feed) .....ccoovvrvveereenenenenne 30

Table 27. TiMiNg .....ccccevvverveeriienieniieeiiienien 90
Table 28. Auxiliary Video Output .. .97
Table 29. Game I/0 Connector..................... 100
Table 30. Keyboard Connector.........cccceeeuveeee 102
Table 31. Power Connector ...........cceeevveennen. 104
Table 32. Speaker Connector..........cceeeeeernnee 105
Table 33. Peripheral Connector................... 107€F

195



196









APPLE 1T
REFERENCE MANUAL

ﬁqpple computer Inc:




NOTICE

Apple Computer Inc. reserves the right to make improvements in the product described in this
manual at any time and without notice.

This manual is copyrighted and contains proprietary information. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from Apple Computer Inc.

©1979 by Apple Computer Inc.
10260 Bandley Drive
Cupertino, CA 95014

(408) 996-1010

Reorder Apple product number A2L0001A (030-0004-01)

Written by Christopher Espinosa

““Apple’ is a trademark of Apple Computer Inc.







o

pplec computer InC.

10260 Bandley Drive
Cupertino, California 95014




174 74L502-BI4

4 7L832-Cl4

V2 7Lssi-ci3 |

3
‘ /4 74LS02-A12
SOHEZ
>

L)
60HZ

"

cn 6QHZ

/4 74L504

o

+5 -5 +12

HIRES (TO CI2-1)

ras=
-

174 74L502-BI3

(223

174 74L508-8I1
Q6
2N3904
B R27
174 74L502-BI4 47K
c3
5-5@pf
0
c2
arpf
— v
Li
27TM4H
s
ik

B

A2 20
Al il
A0 22

48

149
=QCLR ¢4
14

1] N

et .

FALS259 |14

S
[SELEY

2ap

23~

> a
AL 2P

LDPS

AD ZOpr

HBLCCIS 6

1

E3 25p LS

R9
on
a3 4
SYNC a2 OUMF | OunF
2N3904
RS e Hr
14,6 SOFT 5 (A2-11) !——l
ve s 22 = AUX VIDEO
—_ ¢ 4148
13 1s] 9 =1° &
oL QH LD CLR . "
. T 172 74LS74~AIl
HGFEDCSB Nz, WIRE WRAP POST
RI
2| 1i[ie] 5[ 4] 3
r,mi_l 1[io) 1 _ 2000 g
/4 7458662 Al 2
2ay 8 76| s|a 13 " B2,11 =
5
VCC 05 0403 0201 Vo o |3 /4 74LS08-BII VIDEQ QUTRUT
VGG ND 144 74L502-BI3 B3,3 N
Al A2 A3 A4 AS AB AT AB AD s 1M 7
)
l'{TﬂIG I7T18Tl9 0] 212, D@ LATCHED
Dl— »—
—— Ll D2— v
] o E——
— Da— v
D5— v
1 L pe—
a l GAME 1/0 L
16_Isy 14 |.\{7|?}_7 1l |0| 9 CONNECTOR SOFT §
NC_AN@ ANl ANZ AN3 PDL3 PDLI NC 4 CAZ-11)
1/2 74LST4-BIO 5
8 PDL@ PDL2 GND
| 2 4] s 6 nT
+5 L 74LSI94-A10 3‘4 sl sl 2] SOFT 5 (A28)
19 sy  DODI D2 D3DSRMR 8
cplat!
QUAD TIMER 50 741500
ot 1 550-HI3 s Tt .’B%n S Q001 0203 psL | I A2
€ Jop 0 15| 14| 13} |2| 7 10 9
14l 13 R22
5l o 1000 J o5 ¢mao g
n_|o¢ “fie res lce  Teo22ur$i2K SISt olien] 7 sl
Al sl 2] r]isfia =1Tc 1200 I.ozz;m]: - KIS SOFT S (A2-11)
8 lag 8 7 PORE it 6A MA74! S25I S0 E z
A0 12 15141516 17 “5’78 R20 | —=022uF -5 4 7 45 "
L5251 HIA il 00| T I RIS I3I21) 1014151617 74LS00
o se »—J—T: gl F i 1 M0 56
¥ obony|  TGeemF ———— i1 2] 3 alis[ia13[12 N ,
rila 9 7 12 4 = =
o \ RI7
OIF Cio 12K i
CASSETTE DATA IN | O-WF
(O HI-11)
R25 7415194
MPSAI3 222 7 13 74L5194-84 5| 13 2] L oBs
Q4 a5 -
4 Cll _ Rog o 19 [s) DSLQo @z 10 LQ@ Q2 DSR MR
2 s O.luF 2-172" an . cp 1"
4 SPEAKER .
E 1 & 144 i FaiE Adi 3>15°__ peoi p203mrDSR| T peoioz0y | T
Dy Q
2 .R s ci2 af s[ef 1 3[ 4] s| sf
To.iur SOFT 5 (A2-8)
= < LDI94 (BI2-8)
74LS74 13
o CASSETTE
5 DATA OUT HR —
r
A2-11) = T
oo loz 1o Ipe
Ho DI | D305
741.8283-E14 74LSI153 -EI3
I === . 25 |
L5153 Al = 0a Ea 1
= [ A2 Sl ! {10 = L—Ciit sin
Vw0 £a >-<|l —'27—A3 i : 2a Za z Keu *
2 2 3 SOFT 5 SOFT S al 11
‘: | : (B:IgN &2 L—3a TAe 8} 2| 702 ___ 2w 6| 3)13]10 3[13]19 S| 2]14{1
. i
3 7 ) 10 15 Ibla id Ic b laidlc  @boagdoc | 5
-l 10 2 | |
128 :,' - i ?: B 11 ! CLRp=s! 3 3
ERIS : -
m - DI D2 : 2 2b2a2d ¢
| (@b Ebpey 83 e |y SEE Voo 7aLszs7 7 7aLs2s7 7] 4f1] 9]
w1 3b 2 6| ~SECTION L 88
2] o S0
\ g 13
Bl 30 2bl2
{4l -
! " —114 14 4 14 14 14
2, DO DO DO DO
" KEYBOARD— A7
2| T\ 6
5158 12
-3 L] }5a—l+5 NC
¢ ORY SELECT— EI e 2 g s = v le 7 2 | sTRoBE —12 > -2
| i 14 3 3
S TG B = e RAM RAM RAM RAM RAM ———qReseT a
Seenon = s ] A E4 E7 E8 E9 EID s B2 =
3 ) 13 6 =
4 =1 s |° 1l
y =85 B
| . : 'g on b B3t
™ GND
; * ot Py b T sOFTS
— |
0 CAZo1 1) 555 AI3
[ I KB I ) +5
Cla,n TR
I | Y 4le R26

6 D LATCHED




+5 -5
R9
R8 1on
2K o a3
SYNC 2N3904 OlMF
RS
: R
o 4,6 SOFT 5 (A2-11) m A
U 3 ve 3 =
; SOFT 5 (A2-8)
1/4 74L502-B14 g 3 74 Sge-B1 | | # IS 2 85,2 ¢ o
%\ 3 i2 i3 | | _varaLsse—Cia__ __ RTINS S 1 710 r QP
' 5 = ) s 172 78LS5I-CI3 : 6. fo an SR N i I
1/2 74LS74=All
14 74LS02-AI12 /4 78LS02-B14 [112 | cL2 i
L | s bk A WIRE WRAP
50Hz‘.—l ™ 8 7 HGFEDCESE AI2,13 o
D¢ m ! |4_l|2 nfie s 43l zt (i 2000 o
6oHZ 2 | | 2 +s = = = ) 270,
" [ h oy 1/4 74586-82
| 3 [ AR S —— 1 24 s|a| ¥ 13 0" 1
o 6oHZ _ 2 8|76 12 82,11 VIDEO OUTP!
4 ALEBE 1/4 7ALS02-BI4 HIRES (TO CIl2-1) | [Wec 050403 c20rvon, i@ - VA Tatsas o ’ 0 0
3 - Lo Ve o 1/4 74LS02-BI3 83,3 2
‘.— 3 ' Al A2 A3 A4 AS A6 A7 AB A9 [T 5 1aM =
174 74L508-8I1 2613 L
i as 4] 15[ 16 17]18] 19 el 21f22) 3 oI CrE
- L T
. D2— v
P, Fm—— o5 -
Q6 [ aLS174] DA
an3sea 1 EL_, M e »
6 4 | ! | L—ope— -
= -1 bac i i 1 | [ AME 170 A
5 R27 g G
Y i 16 15y 14y 13y 12§ 1| 0] 9 SOFT 5
o a7 CONNECTOR T
AT R R NC ANG ANI ANZ AN3 PDL3 POLI NC J4 thesi 1
(l(:“ﬁw‘m_)_ Sgg@pf | a5 : \ 1/2 74LS74-BI0 5
e e e | [ | co40
H " : rcgJ | : +5 SWD SWI SW2 STB PDL@ PDL2 GND| 74LS257-A8 2ds® A
leg 148 w91 | 3 4] s¥ e 7] e cD
1S c2 = A _Ij 2 f 1 15 2.lo 7aLsioa-n0 3] 4 sl s BYE SOFT 5 (A28)
[ arpf L ; = +5 = )] I
ks e [@@ 7 | — { G 1@ [, D@DI D2 D3OSRMR | s
2 Li 1| 4 8 14 12 CP| 5 741500
-l 27TMH [oec ) | QUAD TIMER +5 RI2 == od 20— 5132 __qe@ Q203 osL | T A2
2 rres—|)i -,f,h | —t—t— 558-HI3 5y ;._1,' oK (mrl(l 5 s ¢
: [ LlL g ) 16 fop b e el I 15| 1413 |z| 7 10 9
LIRS PARITEY 14 5 s a ‘
—.. '.;‘ 138 —— —9>TD f‘q,zén — Tlosen ] b 2A "
Lsp2-Bs e 2w ( j T i s lce Tos RI3 TIMER 3= s SISl oligl ] 7 5 X
174 7ALSO2- B p AT -t < 3.3M 5 d SOFT S (A2-11
7=t 14 TALS02 B } AR NN KR '3’1'2‘_] 8 Q‘; § s I‘OZZFFI G MAT41— K13 6l = I Eo‘_l SZSI S0 E z
. 174 74L511-BI2 “T.. W AP i g 7 rea | L&oopr g | e B 1 i
AL 5251~ HI | 1900 | T RIS GNE 131211 1014151617 741500
oo giwn B 3.z 3 1% Az Sl M — A2
s 174 741511 @12 o5 = o =1 TA LG220F Cis if 2[ 3] a[1s[14[13]12
[ loND N [ s 3 2
A{ 2 \ e v 7 6 5 12 2 = = l_ YY)
1 al o co v—>o— 3 "
oy cio
. . CASSETTE DATA IN ] O-IF
- A2 = =
- Al S (TO HII-11) L8194
L PP P] B MPSAI3 574 o 7his| 13 74LS194-84 7his| 13| 2 LI_ B9
7 Q4 =5 =
SOFT ¢ . l cl _ Red ‘ SOET'S 10 [ bstag a2 10 [sIDSLQ@ Q2 DSR MR
CAZ-1 D) CiR 74 S | 37 4S s O:WF 2-1/2" 8a cplet! ol
Bofp  asll — g a oL ShEM 7 AL AL 5152 oeoi p203mROSR| T g b popio2D3 | 4
1h
6 — D g Q CRI ? T
y 26— 3 3[ af s[e[ 1f2 3l 4] s| e
L] P L S 2y et | Ig'f = SOFT S (A2-8) 4‘
TAL8E50-F |4 - = Lo o g LDI94 (BI2-8)
— — 74L574-013 -
= CASSETTE
22 DATA OUT Ho . _
C S
) ermg WL J
— '.»‘ €1 27 . 12 bR Q
CHIZ-1S o[ 2 26 [ — —
; Sadps zspl2] maisize-ris 13
ON BOARD 24p S—
1O DECODE o2
3 23ps B
‘|z e — A2-11) i
¢ (R}
o AU o =
' AD 2Apr .
vc | va [Ha ln2 coLor mal7m| A laz (a4 lns s © oalozlpa
| VB | H5 | H3 CDP3 REF | 7M 14M Al A3 AS A7
- 741.5283-E14 74LSIS3 - EI3
5 14| 2
] -{a0 o o [7S .
741 5153 7LS153) Al 5 0a Ea 1
Ell a1 12 N ey L2l 1a = G 5T _
. | a-foa eap=ly s 3 : B, it - s | 74Ls174-88 SOFT S|
. 3 7 174
’_‘F Sl a 1o * | s e 22 L 3al3a ZEZRCCIN H soT 3 L ol ol Sl s SorT ol alizlid sl 2lialir sl 3li3lie] sl 2lial 1
4 e y i i g
=124 |, e 7 (A2-113 0 et 0 0 s o Q3 Qb oar Q2 ] @ @ a @ I 1 s [pratdic obeavdac || | | [blaidlc @beaedec | s
"4 23 - g R e B PG R Z,' = 0 ?z Eop 1 2 cLk CLR ! Sol LK CLR 3 sp s anez €
z = ' ! 2b2a 2d Zc a C
g 3 D4 DI D2
10tk b va 7404 oty 2 f2b Lo Do Ba DL De = 08 0 T 7aLszsr 7] 4[12] 9 7aLszs7 7] a[1Z[ 9]
T | i 13, 3p 2b® SEE_VIDEO 4l o SEENoE 87 86
Sl 1L S0 SECTION |1 13 4 6 " 13 ECTI
2o, t
13 ) 14
1 “e{3h Zh
50
MT 14 14 |4| 14| —14 14 14 14
_ 12, ) 0 [ DO D0
et - = ° E KEYBOARD— A7
. Al
. L2z 12 {a2 |"><—'2—+5 ~ NC 'lz
HBLLCIEY. g e MEMORY SELECT- EI | £ sTroB 12 == 12
O ab SEETIMING %’ :: Sefrs ram RAM RAM RAM RAM RABM RA; RAéA RESET T
T AL P SECTION —2s] 5. as E3 E4 ES €6 E7 E E! El . se |-
Wotod 5|7 H 12 Bl B Bl
e 28 4 (15 S fas  ma|U
S ! —=C| CAS 7 0
S R I ! 5 2 Yy iAS =87 8
Ll
6 S 5 2 3. rw L GND
— 18 RW
0, 7 8 ' ot o L L [
0 1 I
o L St 0_ — : : ' ' : il ” 555-A13
j KBD | T 3
| — { I cia.n o a— R26




1 1 be | > | J LS p & J
[ - = o m D0 0 DO D0 0 [ 00
l rll§ 7 % b I KEYBOARD— A7
S 2 ! _
4 J7 b o s P e Ve > 1 \J 16
HeL(oiz-s) ) e 1 -2l i R e it At T u vo—efts ne]
2.fo {78 MlEMORY SELECT-El - £ sThoee 12 ==—e 12
1 0
i b4 I S TIMING A = RA! RAM RAM RAM RAM RAM RAM RAM ——qRESET
} oc a ! I SECnoN e RA2 E4 ) €6 E7 £8 E9 EID B2 |12
14 2ar—— ! ! 3 12 RA3 s 12
lod gy[7 l : i mas —28s Bl 2
S 9 8, +5 RAS ————85 B4
£ s s s Sy T E—— —
L O 75 et 5 ) r 3 3 5 3 7 8 B g3 12
3 vl j s 9 ,T { $ |RAG2 8 zND
2a - 1K l_—’
12, - 7 8 [ S S s B St
Bl e o / | i R A T A e L A I E T soFTs
L == Bl 1, ] ]
2k T = Az 555 AI3
[ p—
cia, i
2 1/4 74L504 i
£3 ¢l vyl (X 1/4 7LS00-A2 !
3 1] 14 12 6
L wfal — Sa]  Ram RAM RAM RAM RAM RAM RAM RAM
={F14-6) M e 2 13 10 R 5] o3 D4 05 06 07 08 09 DI rEEE
= HIRES | 7 3 2 s 13 ‘
(BII-6) - Ea Sap El13 —=
4 1/2 74L520-D2 F1,13 15
B ron ob S 10 a
13, [nn 5 9 3 -
174 74.532-C14 b 4 8 1 T ) ! ) T | ! | ! | ! | ! ] ! 7
15 ' | ]
123\ £b MEMORY SELECT 0 L L . 1 174 74L502-A12 | /4 74L504-CI 1
ﬁ'L/ 7ALS139-£2 ol 0" aia
3 fu2 Mamses 2 =5 s
| 3 7 2N3904
5= [} -Cl4 MEMOR! -
V?smseb " e ¢ | L ::I Ele 5 RAM RAM RAM RAM RAM RAM RAM RAM =
| L . s Fiia B c3 c4 [ c6 c7 c8 cs cio
2 o] |r2 2 L il 13
= @a M—ﬂ 3 12 [ 15,
) @b . Adb @b 4 =g
= g llloc zal- Botalb | b S @ RAS 4
o a—2elod 2| 20p12 — 3 oI DI [ pL oL DL
1/4 74L506-HI zle 2|8 4 5 dew 6 e [ DI __E
3 12 L % 8 " +5 2 2 2 2 2 2 ol |
e la 2d|— = 2 a Q.
i T ki GND CAS DO CSI A2 Al AD Ve
Ic i Ala 1a A6 .
Bolid  Ep= ‘| . Zao:——»— -~ _ S—
Vgg DL RW RAS AS A4 A3V, -
| 74L5257-J1 Ea B8 2 DD
ax| mxs mmai? 4 l 74L5139-F2 ) _5__f L+|z
fAS C'REF 4/16K RAM PINOUT S
- : I 1 1 1 T ]
24 iz 2] iz 2 12 24L ) |;;L_ 24| |2] 20 g =
~ S n0 — ] . -~ - oa >
f K e
6
= A? D2
ROM SELECT NOTE: 5 13
74LS138-F12 — E— I o [12
— s | PERIPHERAL CONNECTOR @ DOES NOT B w4 pald
— 27 GET I/0 SELECT CPIN 1) 3L oa 15
] 'olao 26p2 2 ON PERIPHERAL CONNECTOR 7 ONLY, 2 |, ROM ROM ROM ROM ROM ROM 6
2 10 PIN 19 IS CONNECTED TO SYNC = ={AG 8 Fo €8 () 08 D@ D6
o z5 4 (CI3-8), AND PIN 35 IS CONNECTED Ll a7 L __] |- | oes e _— o) 4
a2 zapll TO COLOR REF (BI3-2) 23
1/4 74LS08 12 rraa ald
a4 23— 22 9
6 6| 13 T
= W €3 z2pt 19 | l__ | | __| . ]
S [—S'CEZ Z1 :5 €52 €Sl Cs3 CS2 CSl _Cs3 CS2 CSI CS3 €S2 CSI CS3 CS2 cSl €s3 cs2Ccsl €s3
[a)
-+ 2de1 20 sk 14 T ¥ o ok X
0] 20 21 18] 201 21 18] 208 2/ 0] 2of 2 18] 20f 2o 18]20) 21
- -
— E—
-/ F12,7 =
Fizio
12,10 =
174 74L504—Cll S[~_8 +5 3 FI2,0 -
% | FI2,12
{7 . 7 F12,13 -
asel e . ! 1A} mtsee g FI2,14 —
] e P3‘—*S v B [va éal.su s |—12 174 741502 ] ™ — @
@ P2 12 BI3 00 = : 3
& Y 24 of T oL - + e I:‘ 1/4 TBLS32-CiA
= - : + +- RAD1| [P
@ PO - RAQI,8 VKT = 0" 14 TaLsE8
‘ PEp=— 10 nf s - — W B il v tA VA 7l 504 Bl
s . cu
ACLR CLKf 4 {rs a3k A0 HHH oy 3
CET CEP| 5.\ P2 Q3L 1 — o197 115 B0 U
S ! s s 13 A2 ne  sopa sal @ W] g
o b Pl o2t —t i A3 y 0 — 581 R/W +5
s s = fepo Qi — A N N gy e o v 0 |«
o 2 Sedee  qol's — Ao N 10 v 174 8T28-HI11
L8161 = 14 740'-2520 74510 A7 — Prins <t g
D12 1] 6 ) RS A8 = HS 7 6 11 32
P P CLRpke— sl 32|
RS P ¢ o> = bl A2 bl 174 B126-HIO
Q2 P2 J K i HS »_u] 10_12] )y 2
1310 Pl <i|h A|2 8197 i a2
14 3 2 i A . H4 9148 Blpa o pola 13—<
@ POt v E— arar N S 174 8126-H10 2
| PE o—z—J AlS — e O e U P
be>CLR CLK ] - HY 1215 < 30 13
[ 7ALSI38-HI2 1/0 SELECTS o] Fiav]->2 - —arar o A8 5 D3 =
CET CEP| I @ 14 . 1/0 SELECTS s s ' 781 6 18 v 174 8T28-HI| T
@ " N4 911 59 gp|<l@ £l 27pL—s=1/07 TO PIN I, PERIPHERAL CONNECTOR 7 = Doe BOr o AT L g
| = i Sedee 26p2 =706 TOPIN | " " 3 ol L nh991A g @ pale?d £
7418153 |Br— 6 19 = 4 A 8197 o /4 8T28—HII
L N g3 2Pl =775 TO PIN | " " 3 > D2 ny 34 218, S ¢S
15 15 13 240“—>I/04 TO PIN | “ w 4 D3 [=— el ~ 5 7
74LS161 Eb  Jbme— 12 — 6_l,a 45 (LU ST ) PR~ I 6
Tc ™ 2302 1703 10 PIN I " " 3 04 A0 3 74 8T26-H10
2oy e : ) ! Sefpz zobS—=1762 TO PIN | v " 2 Totns os <22 r A, Ao e2ef,,, V8
12 ! — 8 5 43 arer
i i SEE RAM | ! 2ofp1 1P =T701 TO PIN I " . | el Depe na sh 22l 27 10—
Ak Pl 1 ADRS MUX | ! 'olro  zop' A7 07 B197 ';J‘ - 174 8T28-HID
%o ro 39 I SECTION ! 048 DEVSEL :L ) I BCs JIE) P
| pep=— N g HI2-15 (TO FI3-5) e ol n'l'-r;/ 2] g o7 [<22 174 8728 H“m@:}_
h=dCLR CLK 3 AIQ USER | LA =
cer cep| T f 74LS138-H2 DEVICE SELECTS 13, i = AT Ha ".)J.ﬂé A5 RESET p<t RESET "
od L% dei  27bl—=DEV 7 TO PIN 41 PERIPHERAL CONNECTOR 7 14, fa12 Q3 }=37 iy 1RQ =t ‘f@!ﬁ;_;%:_.l
9. e Sedez 26— DEV 6 TO PIN 4l v v 6 15 13 7 |38 LT i b P e
5 I 6 6 10 6 s + 5= 42— 2afRDY 1 Te-+5
CLR Q3po+- €3 25p'2 _» DEV 5 TO PIN 41 “ “ s Sid L 0
BLSISH TC s, 7 (1l % 7O PIN 41 & 17 34 CUNMARKED ON BOARD) 4 !
o Hos  pajeedn D g 2ap ;= DEV ! - NS =SVl USER | JUMPER Tl af |
12l pole . 23p=—s= DEV 3 TO PIN 41 - “ 3 18 |n/w e 576 1138] 2|: . i
13 4 2000 Q2f'2— A2 Z2PS = DEV 2 TO PIN 41 ‘ . 2 19 | o |22 .S |
ar Pl 174 7458682 3 2 14 207 Y !
40 Pole 2.\ Qp=— S S{Al 2IpT—e-DEV 1 TOPIN 4 Ll w | [705TB  RES y :
9 S 9nlnr a2 A  20p-—= DEV © TOPIN 41 " " ° 2 | 30, § :
pE pea® |4 {roY Ira = s |
sorts_ [0 o laz [ opte f—o—r DA [ - L1 e J
(A2-11)=T™qCLR CLKi=er 13 15 23 28
CET CEP D@ Qo MAIN L I B 24-|NT QUT INT m-z7 I
SOFT 5 1 4758l J oMA OUT DMA INJ-
Dj NF 10 2 (A2-8) s ] D |2S —
12 1 S
5 =
R Fg ) / U.S. Patent #4,136,359 PERIPHERAL CONNECTOR (I OF 8) i
ki 1 i74 74586 -B2

Other U.S. and Foreign patents pending.



4 — LAY | e - Suning | ] I = —————ay x>
- 1 ———————- - —— - — === —— - 19, [rg DO DO (%) DO DO DO DO Do e e
I L 1 T T % ' 0 ::" KEYBOARD— A7
L 1e ; | 16
74L5257-C12 2y 7LsIs3 L_g___,,____ S __8_.3) 2|, b lels e
(c13-6) 2
HEL e 2,0n =srm) © MEMORY SELECT- EI E > E = 2 7 olis 2 | crroge —12 S —12
5 lon i i I Y’} RAD s —— 3 qReseT
N o A ! SEE TIMING E’ 3 RA - A4 RAM RAM RAM RAM RAM RAM RAM RAM 3
} oc 7,04 | ! I TsEcTION 2] - - RA2- S.{as E3 [2) €5 €6 €7 £8 2 EID 82
18 tod 5|7 | I 3 i2 RA3 13 5 lgs Py
| e 7 \ | RA4 ——— —==A6 s n
s 9 S 4 RAS S.dcas 85 B4
3 Zc s 12 5=l rlgm a9 7 2
a4z s 5 6 7 8 — Apdras =187 83
Pt : : : LR e =
P b 5 ’_iq __________ El12— T T = 5
W gp=t— Flj2 —— T ! : : . el 555 A3
L : o T +5
14,1 — i af R2G
2 174 74L504 Y 2.2m0
ci 2 [an0a a2 3 1/4 74LS00-A2 L Svee |,
|
3 S [ s (Y 4 e - 6 oUT TR
Ala 18 s SEL— RAM RAM RAM RAM RAM RAM RAM RAM
| ={F14-6) e 2abe ;" 13 19 8 . RAM SEL 5 03 D4 D5 D6 D7 D8 D9 DIO TR 'onD THIS
\ = HIRES | 7 3 2 s 13 L 4
(8II-6) —dea 3a L 3 — T 0. IMF
i 4 1/2 74L$20-D2 FI3 — 15 1:
| 14_taan abb2 5 0 a )
| Tl vt i 3 9 3 6t 41 3 TR STB
144 18LS32-CI4 26p12 7 8 — 0 T 7 T T 1 T 1 1 11 : o
1 ]
123N\ Beden MEMORY SELECT 0 . . L L 174 74LS02-A12 | 1/4 74L504~Cl|
3 TALSI39-€2 ) 1 _
3/ﬁ_2 1/4 erSu“ 12 B 1K K
T = 7 2N3904
74 patsebHl 4 FaLsRescls HEMORY |SELECT-El ElL14 S RAM RAM RAM RAM RAM RAM RAM RAM =
|3:] | . Flia s c3 ca s c6 c7 c8 ) cio
Y 2 ] —*
12 é—aa 1|2 3 12 F ————Bb
B 14 12 B
12 @b 2 ADb @b 4 — ———-—4—0
o g oloc 25—7 Betaty |b0:; s 2 RAS —
E) 14 ft—
a—elod 2o 2b) L 3]
1/ 7aLsos-HI | 2 2e|-2 Bdes F L a2 L oI DL [ )4 0L oI oL
3ofia zdl2 L . 8 o 15 3 2 2 2 2 2 2 2
3 2 4 -
i e P s GND CA DO CSI AZ Al A V¢ =
) Ic s Ala la 5 AS
13
d ep= 232 ——
L edes 7 Vg DI RW RAS AS A4 A3Vpp - -
74L.8257-J1 i —U———E
1aMm A@ A2 | ad [ A€ | AB [Al0|AI2| Al4| RW 74L5139-F2 % {3
Al |A3 |AS | A7 |AY |ALL |AI3[AIS) 4/16K RAM PINOUT
! +5 1 1
24] i2] 24 12 24[ |2] 24 w[ N 24| 12 24r 12 T
8 N 9
=|ne F-- - -~ o ba -
=l i
A2 2
ROM SELECT NOTE: S a3 a3
7ALS138-FI2 e rigi I il 7
. | PERIPHERAL CONNECTOR @ DOES NOT A4 D4
arp L - GET I/0 SELECT C(PIN 1) 3105 rom w0 0s |13
| ) + M ROM ROM ROM ROM
A0 Z6h 2 ON PERIPHERAL CONNECTOR 7 ONLY 2 =
2 Lo PIN IS IS CONNEGTED TO SYNC T-{AS F8 Fo €8 £ 08 00 o6
Al ES (CI3-8), AND PIN 35 IS CONNECTED A7 — — b o o7l
LI P Y N— T0 COLOR REF (BI3-2) 23
/4 74508 2 A8
4 Z3pte- 22|,
s §| 13 22 A
| Hl E3 22po— 19, a0 - — S
5 [—cs g2 21p €S2 csI_cs3 cs2 csl_Cs3 cs2 csl c€s3 ¢ cs2 ¢Sl 53
4 15 r r L8] o
El 20 18] 20 2|? 18] 20 2|¥ 18| 20 2|¥ ml 20 .~|f 18| 20 mf
FI2,7
FI2,
F12,10
174 74L504-Cl| SD 8 3 Fi2,11
F12,12
IS r F12,13
Tsel e o i 14 slsee Fl2.14 — ”
B o P3 il 2 arsn |g § | ™ @
@ P2 BI2 12 0o -
i3 . E ol o 14 7LS32-Cla
Tal® i Q3 TRAD1! [ETNNT
@  Pof=g RAQI,8 RPN 'y {0
PEpt— EE : o - L tar, VA L
edoLR cuel 3 P3 Q3 AQ on
CET CEP| 5.\ LN Y L Al ora7
5 1 6 5 13 A2 HY
1) 17 H PL@ . a 8197 =)
B S alre aifd 9 B IS - 3
va rases > Sodee S A2 aro? 174 BT26-HIl 3
7aL8161 LS 1/4 7LS20 745195 A7 — sy ]
oz | 1|™ 3 02 I R AB | 3 4
ojes Pap=2 P{oP CLRp A9 a7 . 174 8126-HI0 >
b I
i3] %2 P2 d K Al - NII"II <1 2 53 : 5 12
Q- Pl 3 Al2 WA 71pq 6 13 3 13,
14 3 2 " AI3 L Pla>2a4 @ pzfe — 2
Q0 P@ 5 Ma H'l.‘.‘ll .‘: 10 14 ~ 174 B126-H1Q 7
Y ] x
) i e T n}') 12 15 " % 0 13—
LeldcLr cLk ) S I & _
cer cep|”| o |4+ 74LSI138-HI2 1/0 SELECTS ST Hizy "ig 8 o 6 ie (0 o D= ) 1\128~H||’C§:—}
l soHzZ —m 2
o[ se ) doder 27hL—=1/07 TO PIN I, PERIPHERAL CONNECTOR 7 gt i e e T - LU i
0] 7 i 76> oble2— 5 T Al oI W 5pq A 17 <1 29 6
= il E2 26p=—=1/06 TO PIN | = v 6 5 AB @ DA =
7415153 1B 5 12 o L PS 2 <27 aror el o 14 BT28—HII
2ble'? €3 25p2 1705 TO PIN | " " 5 7 e S i 3492 18l G ¢S
Ul 70 4 3 D3 j=— aryr 7
15 15 13 24po—==1704 TO PIN | " " 4 A ol o 2
Eb  3b piedi 6 45 (I, HA 901 10 19 v l2s } 6
7aLsi6l Tc " oL 232 =703 T0 PIN | " “ 3 gl 04 DA f aror G (A0 5 0o 174 8T26-HID
015 1oy 3 i i 3 R AS 05 WA 116 1220 5
o S ! A2 z2po—e=1/02 TO PIN| " . 2 8 3 L vy Al g
oz pofer e rig | i 2.0a1 2P =170 TO PIN I " . ] g s DE e Ha apq2el.. et L 10—
QP ADRS MUX | . lo{ro  zop Y4 o7 o7 174 8728-HI0 T
Blae  Po 39 B SECTION | ! ——': A8 DEVSEL -2—:6 H AN
| PEP==——ryv s HI2-15 (TO FI3-5) N bt J L XD Hnik—qﬁlq}—l
R CLK 13 ) USER | ; 5 o
il b s ¥ 70LSI3-H2  DEVICE SELECTS E A 1130149 250 s ReseT bt RESET "
"ROM AT-3
" 17 L 4der  27b’—=DEV 7 TO PIN 41 PERIPHERAL CONNECTOR 7 1412 a3}t 1RAOI) 1RQ *“'1 (.l ““rTATa:"I
-r|9 e . 5?"52 zso%—oev § TO PIN 41 # “ 6 L :Z A3 ™ ..% PR, T Y N I 2 1 SRTH
. 15 o €3  25p'~—= DEV 5 TO PIN 41 " " 5 L 5 =
74LS161 TC FYELR iasp T o 24 CUNMARKED ON BOARD) so__| la |
D4 n 5 - 6 . D3 Q3 24;‘,?—— DEV 4 TO PIN 4} w v 4 L AlS -5V USER | JUMPER T |
{ 12l0o  pole® . 23p——= DEV 3 TO PIN 4) “ " 3 L 18 {p/w ) o o 118la] s :
100 5 P B0 1200 qoll@ a2 220:4—>osv 3 70 PIN 41 " “ 2 19| o |32 L3 1
14 3 14% JASB67R2 ap— | 2olal  ZIPS—=DEV T TOPINAI v " l 2 7558 Res [ 11 NS !
@ Po 2.\ 34 12 ! 15 A ] !
9 | A0 20 DEV © TO PIN 4l - “ [*] 21 {o Ra |22 r ‘
pg > ol Q —{ROY IRQ[— : 1 !
+5  SOFTS | e ! aop 22 {5 vy S — i !
a'y S=pgan o<t 3.lo  aal® 23 it out Nt inf 28 -
¢ ) : - —
wass B Uy [ MAIN LOGIC BOARD SCHEMATIC 24 o our ow - 27 = —
111 TOuF 10 7 (h2-8 25| ¢ GND .ﬁl — ———— =
(1000) = 1
) 8 — S
Vo S 5 j : U.S. Patent #4,136,359 PERIPHERAL CONNECTOR (I OF 8)
£ 1/4 74586-B2

. Other U.S. and Foreign patents pending.



